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a b s t r a c t

Asymmetric liquid–liquid droplet heating mechanisms differ from the more commonly studied and bet-
ter understood symmetric liquid–gas mechanisms. In this work, we simulate two-dimensional low
Weber number droplet heating in developing low Reynolds number liquid boundary layers. Of particular
interest are the influences of Weber, Prandtl, and Reynolds number magnitudes on the system evolution.
We perform simulations with a coupled Eulerian–Lagrangian interface capturing methodology – the
Lagrangian volume of fluid – alongside an Eulerian solver for the Navier–Stokes equations that provides
the spatial and temporal evolution of the temperature and velocity fields for the droplet and the sur-
rounding fluid. Our results show droplet rolling induced by the velocity boundary layer modifies the tem-
perature field in and around the droplet. Conduction negates the thermal influence of rolling in low
Prandtl number droplets, but modifies the continuous phase temperature field. The Magnus force sepa-
rates the droplets from the heated surface, decreasing their heating rate. These results establish the fun-
damentals of asymmetric liquid–liquid droplet heating in developing boundary layers: it is necessary to
include the Magnus force in physically representative near-wall droplet heating models, and resolution of
near-droplet temperature gradients may be necessary in situations with temperature dependent inter-
face processes.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanisms of liquid dispersed phase heating in develop-
ing liquid boundary layers as a function of phase-dependent prop-
erties are largely unknown. One impacted field is the boiling of
dilute emulsions, which have been proposed for use in next-
generation electronic cooling devices [25,26]. It is impossible to
make high accuracy predictions of liquid–liquid system behavior
without an understanding of the interactions between droplets
and liquid boundary layers, particularly when attempting to pre-
dict complicated phenomena such as chain boiling [4]. The goal
of the present investigation is to uncover the dynamics of droplets
in the developing thermal and hydrodynamic boundary layers of a
liquid continuous phase.

Numerous experimental and computational studies have been
performed with the intent of understanding the hydrodynamics of
droplets suspended in liquid shear flows. Droplet deformation,
breakup, and coalescence in simple shear flows have been readily
demonstrated between parallel plates [6,8,13,14,29,31,32,34].
Researchers have also considered droplet deformation and theMag-

nus force in shear flows governed by Stoke’s equations [12,20,21].
Counter-rotating vortices have been physically observed inside dro-
plets in a variety of configurations [35,36], and researchers investi-
gating the temperature distributions within droplets have cited
these vortices as a droplet heat transfer mechanism [7,10]. Behav-
iors revealed by these spatially resolved studies, including internal
circulation and the isothermal nature of highly diffusive droplets,
have lead to the development of droplet heat transfer models [28].
These models can be partitioned into five categories (six including
full Navier–Stokes solutions) [27]: spatially and temporally isother-
mal droplets; thermally lumped droplets; solid droplets (the con-
duction limit); conduction limit models with an effective thermal
conductivity to account for the thermal effects of convection
[2,15]; and droplets with prescribed internal convection
[11,22,24]. These droplet heat transfer models make significant
assumptions about droplet conduction, deformation, and potential
internal convection, which generally apply to liquid droplets in a
gaseous continuous phase; the influence of strong surface tension
coupled with the asymmetry of a developing liquid boundary layer
may have unforeseen affects on the developing temperature field
that are not well-satisfied by current droplet heat transfer models,
rendering their use unjustified in the present context.
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In this study, we examine the dynamics of a droplet near a
heated surface. We employ a coupled Eulerian–Lagrangian solver
to model two-dimensional droplets in the developing momentum
and thermal boundary layers of a liquid continuous phase in the
laminar regime. We consider the effects of dispersed and continu-
ous phase Prandtl numbers, Reynolds number, and Weber number
on the droplet dynamics and heat transfer.

2. Formulation

2.1. Fluid transport

A conservative form of the Navier–Stokes equations govern
multiphase flows:
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which are a function of the fluid density, q, the velocity vector, u,
the static pressure, P, the deviatoric stress tensor for Newtonian flu-
ids, s, the specific heat, Cv , the thermal conductivity, k, and the fluid
temperature, T. The surface tension term,

Fst ¼ rjn̂; ð4Þ
scales linearly with the interfacial curvature, j, and the interfacial
tension coefficient, r, and acts along the outward unit normal, n̂.
Surface tension arises from an imbalance in intermolecular attrac-
tion and physically manifests as a surface force from a macroscopic
perspective. To rectify the difficulty this poses for Eulerian numer-
ical methods, [3] suggest the implementation of a continuum sur-
face force model (CSF), wherein a surface tension volume force
acts in a small neighborhood of the interface in a way that replicates
the large scale behavior of surface tension. Appropriate selection of
the neighborhood and modeling of the surface tension volume force
allows for accurate numerical representation of surface tension in
an Eulerian framework [23]. An additional benefit of the CSF is that
it eliminates the need for fluid property jump conditions at the
interface because the finite interface thickness allows for smooth
variations in properties.

This study considers a liquid–liquid system but solves the com-
pressible Navier–Stokes equations. A Cole-stiffened equation of
state is implemented for pseudo-incompressibility [30],
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c
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� �c
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; ð5Þ

where cs is the speed of sound, qo is a reference density, and c is the
adiabatic index. The compressible Navier–Stokes equations, cou-
pled with the Cole-stiffened equation of state, emulate an incom-
pressible flow system.

2.2. Multiphase representation

A Lagrangian volume of fluid (LVOF) approach [17] provides
interface capturing and the surface tension force. The domain is
seeded with N particles of volume Vi, each carrying a volume of
fluid (VOF), wi. Particles carrying a VOF of wi ¼ 0 belong to the con-
tinuous phase, while particles carrying a VOF of wi ¼ 1 belong to
the dispersed phase. A weight function, W, operates on the LVOF
field to construct the color function, a kernel representation of
the LVOF, given by

ci ¼
PN
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Unit interface normal vectors, n̂i, are computed on each particle
via

n̂i ¼
PN
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The curvature, ji, is then computed from the unit normal vec-
tors according to

ji ¼ �
XN
j¼1
j–i

rWð xj � xi

�� ��Þ � ðn̂j � n̂iÞVj: ð8Þ

An approach based on smoothed particle hydrodynamics and
the CSF Model is used to construct the surface tension term for
each Lagrangian particle [23],

Fi ¼ rjini: ð9Þ
The Eulerian surface tension present in Eq. (2), Fst , is obtained

for every Eulerian cell by averaging the particle surface tension
forces within each cell,

Fst ¼ 1
Npc

XNpc

i¼1

k1Fi; ð10Þ

where Npc is the number of particles in the Eulerian cell and k1 is a
calibration constant.

3. Results

3.1. Flow description and physical parameters

We simulate a droplet of radius Ro traveling above a heated sur-
face near a laminar boundary layer. The boundary layer is treated
in a temporal manner which significantly reduces the computa-
tional time [1,9,18,19]. The relevant dimensionless numbers for
this configuration are the Reynolds number, the Weber number,
and the Prandtl number. The Reynolds number, Re ¼ qcUoLo=lc ,
is based on the free-stream velocity, Uo, the distance from the sur-
face to the bottom of the droplet, Lo ¼ Ro, the continuous phase
density, qc , and the continuous phase viscosity, lc . The Weber

number, We ¼ qdU
2
oRo=r, is based on the interfacial tension coeffi-

cient, r, the droplet radius, Ro, the dispersed phase density, qd, and
the free-stream velocity. The Prandtl number, Pr ¼ k=m, depends on
the thermal conductivity, k, and kinematic viscosity, m, of the local
phase. A schematic of the domain appears in Fig. 1.

To model a small droplet in the near-wall region, we select the
Weber number to be of order 0.1 and the Reynolds number to be of
order 1. This combination allows for laminar, diffusion-dominated,
two-dimensional flows. These parameters additionally allow the
droplets to remain relatively undeformed – a characteristic of
small liquid droplets. Simulations are performed with Reynolds
numbers of Re ¼ 1 and Re ¼ 5. For each Reynolds number, the dis-
persed phase Prandtl number assumes values of Prd ¼ 0:2; Prd ¼ 1,
and Prd ¼ 5, while the continuous phase Prandtl number is Prc ¼ 1.
A constant heat flux is imposed at the lower surface. Table 1 pro-
vides a summary of all simulations performed.

3.2. Numerical specifications

The Navier–Stokes equations are solved via the second order
accurate MacCormack scheme. The domain size is 12Lo � 9Lo and
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