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a b s t r a c t

We construct particular solutions for some heat transport differential equations, in particular, for
extended forms of hyperbolic heat equation and of Guyer–Krumhansl (GK) equation. The operational
approach, integral transforms, generalized orthogonal polynomials and special functions are used.
Examples of heat propagation in non-Fourier models are studied and compared with each other.
Analytical solutions for some three-dimensional heat transport equations are obtained. The exact analyt-
ical solutions for GK type heat equation with linear term are derived. The description of an instant heat
surge propagation and of power-exponential pulse is given in heat transport models of Fourier, Cattaneo
and Guyer–Krumhansl. Space–time propagation of a periodic function, obeying telegraph and GK equa-
tions with linear terms is studied by the operational technique. The exact bounded analytical solutions
are obtained. The role of various terms in the equations is illustrated and their influence on the solutions
is elucidated. The application for ballistic heat flow study with account for Knudsen number is provided.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fourier’s law of heat conduction, which relates linearly the tem-
perature gradient (the cause) to the heat flux (the effect) is one of
the most popular laws in continuum physics as it provides an
excellent agreement between theory and experiment for more
than 90% of the cases. It is undoubtedly the best model for heat
conduction in undeformable solids. Fourier’s law of heat conduc-
tion is one of the most important laws of physics in our everyday
life. It constitutes the best model for heat conduction in many
solids, relating linearly the temperature gradient to the resulting
heat flux However, it has some shortcomings. As noted by
L. Onsager in 1931, the Fourier’s model was in contradiction with
the principle of microscopic reversibility [1]. He writes that this
contradiction ‘‘is removed when we recognize that is only an
approximate description of the process of conduction, neglecting
the time needed for acceleration of the heat flow”. Despite its
success, the Fourier fails to describe heat conduction at low tem-
perature <25 K, in particular, in dielectric crystals, and in small sys-
tems. Fourier law displays the unphysical properties; in particular,
it lacks inertial effects: if an instant temperature perturbation is

applied at a point in the solid, it will be felt instantaneously and
everywhere at all distant points. The most important related
phenomenon is the so-called second sound, when temperature
disturbance propagates like damped waves. To overreach the
problems associated with Fourier’s law, Cattaneo [2] proposed a
time-dependent relaxational model, which yielded the following
equation:

s@2
t þ @t

� �
T ¼ kTr2T; ð1Þ

where s is an intrinsic thermal property of the media, characteriz-
ing the time needed for the initiation of a heat flow after a temper-
ature gradient appears at the boundary of the domain, and kT
denotes heat diffusivity. The time s is often related to the speed
of the second sound C in media (s ¼ kT=C

2);
ffiffiffiffiffiffiffiffiffiffi
kT=s

p
¼ C represents

a velocity like quantity, associated with the speed of the heat wave
in the medium, which characterizes the thermal wave propagation
the same way as the diffusion behavior is characterized by the dif-
fusivity. The relaxation time s in heat conduction is extremely small
(s � 10�13 s) at room temperature. Eq. (1) is the simplest model of
the second sound phenomenon observed first in liquid Helium
[3]. Later on, the analysis of the theoretical background [4] resulted
in the observation of second sound also in solid crystals [5], via
properly designed experiments [6–8]. In these tests the heat pulse
technology was crucial for the sensitive detection of the thermal
diffusivity.

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.01.005
0017-9310/� 2016 Elsevier Ltd. All rights reserved.

⇑ Address: Faculty of Physics, M.V.Lomonosov Moscow State University,
Leninskie Gory, Moscow 119991, Russia. Tel.: +7 (495)9393177; fax: +7 (495)
9392991.

E-mail address: zhukovsk@physics.msu.ru

International Journal of Heat and Mass Transfer 96 (2016) 132–144

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2016.01.005&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.01.005
mailto:zhukovsk@physics.msu.ru
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.01.005
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


However, the hyperbolic heat equation does not properly
describe heat conduction. Numerous mathematical contradictions,
related to this equation, were evidenced (see, for example [9–11]);
for example, it was shown that the telegraph equation did not pre-
serve the non-negativity of its solutions and that the maximum
principle was not valid for the hyperbolic heat equation even in
the one-dimensional space. Moreover, some physical contradic-
tions, related to Cattaneo’s equation, were also noted (see, for
example, [12,13]). It was shown that experimental data did not
confirm what this equation predicted. Thus, Cattaneo’s equation
for heat propagation was superseded by others. Some of the
advances are described in [14].

The spectrum of mathematical studies of heat-type equations
and their solutions is extremely broad. In what follows we propose
operational approach to their solution [15–17]. Its evident advan-
tage is that it allows exact and straightforward analytical solutions,
when combined with operational presentation of generalized
forms of Hermite, Laguerre and other orthogonal polynomials
[18–20], covering also high order equations [21,22]. Moreover,
many of these equations describe different physical phenomena
in other segments of physics. Recently evolution of Gauss and Airy
packets, governed by the one-dimensional Schrödinger equation
for a charge in constant electric field

i@sWðx; sÞ ¼ �@2
xWðx; sÞ þ bxWðx; sÞ ð2Þ

was studied in [16] by the operational method [15]. In this context
we recall that particle propagation under a potential barrier obeys
Schrödinger equation, subject to t ! is change. Then, upon denot-
ing W ! F, Eq. (3) becomes

@tFðx; tÞ ¼ a@2
x Fðx; tÞ þ bxFðx; tÞ; ð3Þ

which is Fourier heat equation with linear coordinate term, this lat-
ter being non-essential in the context of heat transport. The above
Eq. (3) does make sense in the imaginary time formalism, i.e. in
the Euclidean picture in quantum mechanics (see, e.g. [23]). This
equation is important in quantum chromo dynamics vacuum and
describes tunneling of a particle through a region, where potential
energy is greater than the particle energy. The operational solution
of Eq. (3) can be expressed also via Gauss integral and it reads as
follows [16]:

Fðx; tÞ ¼ eUðx;t;a;bÞĤŜf ðxÞ ¼ eUðx;t;a;bÞ 1
2
ffiffiffiffiffiffiffiffiffi
pat

p
Z 1

�1
e�

ðxþab t2�nÞ2
4 ta f ðnÞdn;

ð4Þ
where Uðx; t;a;bÞ ¼ 1

3ab
2t3 þ b t x is the phase, Ĥ ¼ eabt

2@x is the
translation operator and the heat diffusion operator

Ŝ ¼ expðat@2
x Þ ð5Þ

was thoroughly explored by Srivastava in [24]. Evidently, for heat
transport with b ¼ 0 we get U ¼ 0. Note that the differential opera-
tor in the exponential (5) reduces to the first order derivative with
the help of the following integral presentation for the exponential of
a square of an operator p̂ [25]:

expðp̂2Þ ¼ 1ffiffiffiffi
p

p
Z 1

�1
expð�n2 þ 2np̂Þdn; ð6Þ

where p̂ ¼ ffiffiffiffiffi
at

p
D. Translation operator Ĥ produces shift:

expgðDþaÞf ðxÞ ¼ expgaf ðxþ gÞ. The solution (4) consists of the action
of the evolution operator on the initial condition Fðx;0Þ ¼ f ðxÞ,
which is transformed by �̂S and �̂H. While it is not always possible

to compute the result of the operatorial action of �̂S and �̂H on arbi-
trary function, it is easy to obtain the result for the initial monomial
f ðxÞ ¼ xn. The action of the heat diffusion operator on it simply
yields the Hermite polynomials, defined below. Moreover, we can

choose more general initial condition function f ðxÞ ¼ xkedx and
according to the operational rule

expðyD2
x Þxkeax ¼ eðaxþa

2yÞHkðxþ 2ay; yÞ; ð7Þ
where the Hermite polynomials of two variables Hnðx; yÞ are defined
as follows [26]:

Hnðx;yÞ¼ ey
@2

@x2xn ¼n!
X½n=2�
r¼0

xn�2ryr

ðn�2rÞ!r! ; Hnðx;yÞ¼ ð�iÞnyn=2Hn
ix

2
ffiffiffi
y

p
� �

ð8Þ

we obtain Ŝf ðxÞ ¼ expðdðxþ daÞÞHkðxþ 2da; aÞ ¼ f ðx; tÞ, a ¼ at. The
consequent action of the translation operator Ĥ yields the shift
along the x argument and results in

Fðx; tÞ ¼ eUþD1Hkðxþ 2tadþ t2ab;atÞ; ð9Þ
where D1 ¼ dðxþ dat þ abt2Þ. For heat conduction we can assume
b ¼ 0 in (3) and then we get the following simple solution:

Fðx; tÞjb!0;f ðxÞ¼xkedx ¼ Hkðxþ 2tad;atÞ expfdðxþ datÞg ð10Þ
For d ¼ 0 we immediately obtain the result for f ðxÞ ¼ xn:

Fðx; tÞjb!0 ¼ eUHn xþ abt2;at
� ���

b!0 ¼ Hnðx;atÞ: ð11Þ
This result is useful also if the initial function is expandable in

series f ðxÞ ¼Pncnx
n or can be approximated by them; then

the solution appears in the form of series too: Fðx; tÞ ¼
eU
P

ncnHnðxþ abt2;atÞ. Moreover, the initial function f ðxÞ ¼ xkedx

is more general and itself represents a surge with power rise and
common exponential fade for d < 0 and positive coordinate x > 0
(i.e. x2e�x, etc.). It will be discussed in what follows.

Consider the following two-dimensional heat propagation
equation with the linear terms:

@tFðx; y; tÞ ¼ a@2
x þ b@x@y þ c@2

y

� 	
þ bxþ cy

n o
Fðx; y; tÞ;

minða;b; cÞ > 0 ð12Þ
and the initial condition Fðx; y;0Þ ¼ f ðx; yÞ. It can be solved by the
operational method, which yields the following two-dimensional
generalization of the solution (4):

Fðx; y; tÞ ¼ eWĤxĤyÊ f ðx; yÞ; ð13Þ

where Ĥx ¼ e t2ðabþbc=2Þ@x and Ĥy ¼ et2ðccþbb=2Þ@y are the translation
operators for each of the two coordinates,

W ¼ ðab2 þ cc2 þ bbcÞt3=3þ tðbxþ cyÞ is the phase and

Ê ¼ exp t a@2
x þ b@x@y þ c@2

y

� 	h i
ð14Þ

represents the heat diffusion operator for the two-dimensional case,

analogous to Ŝ operator (5) in the one-dimensional case. The result

of the action of the heat diffusion operator Ê on the initial condition

f ðx; yÞ is f ðx; y; tÞ ¼ Êf ðx; yÞ and, consequently, the commuting

diffusion operators ĤxĤy shift the argument of the function f . In
complete analogy with the one-dimensional case we obtain the
solution of the two-dimensional heat conduction equation with
lineal terms (12) in the following form:

Fðx;y;tÞ¼ eWĤxĤyÊf ðx;yÞ/ f xþ t2ðabþbc=2Þ; yþ t2ðccþbb=2Þ; t� �
:

ð15Þ
The explicit double integral form of the operator Êwas obtained

in [20]; it is the Gauss type integral, which we omit here for the
sake of conciseness. In the case of higher space dimensions the

heat diffusion is executed by one-dimensional operators (5) ŜxŜy.
The solution in this case reads as follows:
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