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a b s t r a c t

The partial differential equations for the general case of the three-fluid parallel-channel heat exchanger
are solved analytically by formulating them into boundary control systems. Both the co- and the
counter-flow cases with three thermal communications between the channels are considered. Based
on the analytical solution formula for the transient case, the steady state and the time to reach the steady
state are studied. Illustrating examples and numerical simulations are given.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

As important components of numerous thermal systems, heat
exchangers are widely used in a variety of industrial processes
and engineering experiments to realize the transfer of heat
between hot and cold fluids or gases [10], for instance in: refriger-
ation, air conditioning, power plants, chemical plants, petrochem-
ical plants, petroleum refineries, natural gas processing, and
sewage treatment. Among which, the three-fluid parallel-flow and
the three-fluid counter-flow heat exchangers or the mixed ones, are
popular and commonly utilized in many places, such as: helium-
air separation units, ammonia gas synthesis, hydrogen liquefaction
processes, and purification systems.

In this paper, we are concerned with the following equations for
the three-fluid parallel-channel heat exchanger with three thermal
communications
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Here, Tiðx; tÞ denotes the temperature of the fluid in the channel
i at time t and at position 0 6 x 6 l, the letter l represents the
length of the heat exchanger, si ¼ �1 indicates the direction of
the fluid i, the positive constants bij are of dimension Hz,

bij ¼ kijPij

qicpiAi
ð2Þ

where kij ¼ kji; Pij ¼ Pji (i; j ¼ 1;2;3; i–j). Note that strictly speaking,
each bij depends on other physical coefficients that depend on tem-
perature and hence on position and time. The constant assumption
is an approximation which makes the problem easy to deal with.

The above type of heat exchanger equations has been studied in
[1, Section 2] where it was assumed that the heat transfer coeffi-
cients and the physical properties of the fluids are constant. The
fluid temperature and mass flow rate in each channel were sup-
posed to be uniform on the cross section perpendicular to the
stream direction. In addition, unlike [9], the axial heat diffusion
in the walls and the heat capacity of the walls were not taken into
account.

The transient temperature fields in multi-channel heat
exchangers and related topics have received much attention in
recent years [1–3,5,7–9,12,13]. Different methods have been
adopted and different topics have been concerned. Explicit solu-
tions of the equations for the three-fluid heat exchanger at steady
states have been derived for all fluid flow arrangements [14], see
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Fig. 1 therein for all the possible arrangements. Under some
additional conditions, an analytical solution was obtained in [1]
applying the Laplace transform method. However, to the knowl-
edge of the authors, what obtained in the literature are mostly
either numerical solutions or the analytical stationary field solu-
tion. In order to obtain stationary initial conditions and stationary
final state for (1), its stationary case is solved with relevant bound-
ary conditions. Well suitable for this purpose is the effective shoot-
ing method [6].

Recently, we solved analytically the three-fluid parallel-flow
heat exchanger equation with two thermal communications for
the case s1 ¼ s2 ¼ s3 ¼ 1 by formulating it into a boundary control
system, see [2] for the details. In the present paper, this method is
adopted again to study the general case of equations for the
three-fluid parallel-channel heat exchanger with three thermal
communications.

The rest of this paper is organized as follows. In Section 2, we
solve (1) analytically. Based on the analytical solutions, the steady
state and the steady state time are then derived which follows
from the nilpotence of the underlying system semigroup. In Sec-
tion 3, illustrating examples and numerical simulations are given.
Section 4 is devoted to conclusions.

2. Analytical solutions

In this section, we solve (1) analytically. As mentioned before,
the state space approach is adopted and we work in the real state
space

Z :¼ L2ð0; lÞ � L2ð0; lÞ � L2ð0; lÞ
where L2ð0; lÞ stands for the space of squarely integrable functions
on ð0; lÞ. The standing assumptions on the initial temperature fields
Tiðx; 0Þ ¼ /iðxÞ and the boundary inputs uiðtÞ are
/i 2 H1ð0; lÞ; uið�Þ 2 C2½0;1Þ; i ¼ 1;2;3 ð3Þ

where H1ð0; lÞ is the first order Sobolev function space (differen-
tiable functions in the sense of distribution, equivalently, absolutely
continuous and hence differentiable almost everywhere with deriva-
tive in L2ð0; lÞ; we refer to any a standard textbook on functional
analysis, for instance [11, Section 7.2] for more information).

All the following possible fluid flow arrangements will be con-
sidered (note that Case 1 with two thermal communication has
been studied in [2]).

Case 1: s1 ¼ s2 ¼ s3 ¼ 1.
Case 2: s1 ¼ s3 ¼ 1; s2 ¼ �1.
Case 3: s1 ¼ 1; s2 ¼ s3 ¼ �1.
Case 4: s1 ¼ s2 ¼ 1; s3 ¼ �1.

The boundary conditions are possible combinations of
Tið0; tÞ ¼ uiðtÞ and Tjðl; tÞ ¼ ujðtÞ. The concrete form depends on
the fluid flow arrangement. For example, the boundary conditions
corresponding to Case 2 are

T1ð0; tÞ ¼ u1ðtÞ; T2ðl; tÞ ¼ u2ðtÞ; T3ð0; tÞ ¼ u3ðtÞ: ð4Þ
As a state space method, the boundary control system method

[4, Section 3.3] is classical and effective in solving linear partial dif-
ferential equations with boundary inputs. In the following, we
solve (1) and (3) case by case. Since the discussions are in parallel
to those in [2], here we only state the results. Let SrðtÞ and SlðtÞ be
the right-shift and left-shift semigroups on L2ð0; lÞ given by

ðSrðtÞf ÞðxÞ ¼
f ðx� tÞ; x P t;

0; otherwise;

�
ð5Þ

ðSlðtÞf ÞðxÞ ¼
f ðxþ tÞ; xþ t 6 l;

0; otherwise:

�
ð6Þ

2.1. Analytical solution for Case 1

For Case 1, the boundary conditions are
T1ð0; tÞ ¼ u1ðtÞ; T2ð0; tÞ ¼ u2ðtÞ; T3ð0; tÞ ¼ u3ðtÞ; ð7Þ
if

/1ð0Þ ¼ u1ð0Þ; /2ð0Þ ¼ u2ð0Þ; /3ð0Þ ¼ u3ð0Þ; ð8Þ
then (1) with s1 ¼ s2 ¼ s3 ¼ 1 subject to (3) and (7) has the solution

T1ðx; tÞ
T2ðx; tÞ
T3ðx; tÞ

2
64

3
75 ¼

ðxþ1Þu1ðtÞ
ðxþ1Þu2ðtÞ
ðxþ1Þu3ðtÞ

2
64

3
75þTðtÞ

/1ðxÞ � ðxþ 1Þu1ð0Þ
/2ðxÞ � ðxþ 1Þu2ð0Þ
/3ðxÞ � ðxþ 1Þu3ð0Þ

2
64

3
75

þR t
0 Tðt� sÞ

U11ðx; sÞ
U12ðx; sÞ
U13ðx; sÞ

2
64

3
75ds:

ð9Þ

Nomenclature

symbol physical meaning and dimension
Ai cross section area of channel i, m2

bij quantities given by (2), Hz
cpi specific heat of fluid i at constant pressure, J/(kg K)
H1ð0; lÞ the first order Sobolev function space
kij overall heat transfer coefficient between channels i and

j, W/(m K)
l common length of the channels, m
L2ð0; lÞ the function space of squarely integrable functions
Pij common perimeter of channels i and j, m
si flow direction of fluid i, si ¼ 1 means positive

x-direction and si ¼ �1 means negative x-direction

SiðtÞ the i-th term of the Dyson–Philips series
SlðtÞ the left-shift semigroup on L2ð0; lÞ
SrðtÞ the right-shift semigroup on L2ð0; lÞ
t time, s
Tiðx; tÞ the transient temperature profiles, �C
TðtÞ the system operator semigroup
uiðtÞ the system boundary input into channel i
v i velocity of the fluid in channel i, m/s
x Cartesian coordinate, m
Z Z ¼ L2ð0; lÞ � L2ð0; lÞ � L2ð0; lÞ, a product space
/iðxÞ initial temperature field of the fluid i
qi density of the fluid i, kg/m3

Fig. 1. Cross section of the heat exchanger with three thermal connections.
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