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a b s t r a c t

In this work, the governing field equations describing the momentum and forced convection heat transfer
from heated spheroids, including the limiting case of a sphere, in water based nanofluids have been
solved numerically in the steady and axisymmetric flow regime over the following ranges of conditions:
Reynolds number, 1 6 Re 6 100; nanoparticle volume fraction, 0 6 / 6 0:06 and aspect ratio, 0:2 6 e 6 5
for two sizes ðdpÞ, namely, 30 nm and 100 nm, of CuO and Al2O3 nanoparticles. Over the present range of
conditions, a qualitative similar behavior is observed for both CuO and Al2O3 nanofluids. The detailed
structure of the flow and temperature fields in the vicinity of the spheroid is analyzed in terms of stream-
line patterns and isotherm contours, respectively. The value of the total drag coefficient for all configu-
rations of the spheroid is always seen to increase with the increasing value of / for all values of Re; dp

and e. All else being equal, the flow detaches early from the spheroid in nanofluids comprised of
100 nm nanoparticles, whereas the flow separation delays in nanofluids containing 30 nm nanoparticles
with reference to that seen in clear water. The rate of heat transfer is seen to be monotonic with / for
nanofluids containing 100 nm nanoparticles, whereas it is seen to be non-monotonic for nanofluids hav-
ing nanoparticles of 30 nm in size. Finally, the present values of the total drag coefficient and average
Nusselt number are correlated using simple analytical forms which facilitate the interpolation of the pre-
sent results for the intermediate values of the governing parameters.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fluid flow through and heat transfer in a particulate system
consisting of spheroidal shaped particles is frequently encountered
in many industrial applications ranging from food, pharmaceutical,
health and personal-care products to complex multiphase systems
including fixed and fluidized bed reactors, transportation of slur-
ries in pipeline, separation based on the gravitational settling, por-
ous media flows in oil and refinery industries, etc. [1,2]. This stems
to the importance of understanding the underlying fluid flow and
heat transfer phenomena of these systems in order to design effi-
cient and long-lasting process equipments which eventually con-
trol the quality of the final product. However, the complex fluid
flow and heat transfer phenomena of these particulate systems
can be well described with a good understanding of a single parti-
cle system placed under otherwise identical conditions to that of a
multi-particle system. For this reason, the fluid flow and heat
transfer phenomena from a single sphere situated either in a

streaming fluid or falling in a stagnant fluid denotes a classical
problem over the years in the domain of transport phenomena
[3]. The empirical correlations deduced for the drag coefficient
and Nusselt number for a sphere are regularly used as a stepping
stone for the development of new correlations for other irregular
shaped geometries, e.g., cube, cylinder, cone, etc., under various
operating conditions, and over the years, a voluminous body of
knowledge has been accrued on this topic by many researchers
[4,5]. Not only for a sphere, but also for the other two classes of
the spheroid, namely prolate and oblate configurations, a large
body of literature is now available on the momentum and heat
transfer phenomena in Newtonian as well as in non-Newtonian
fluids like shear-thinning, shear-thickening, visco-plastic, visco-
elastic, etc.

The early studies on flow past a solid spheroid were based on
the theoretical analysis. Oberbeck [6], probably, was the first
who theoretically investigated the flow past a spheroid by extend-
ing the Stokes drag law for a sphere with a shape correction factor.
Theoretical analysis mainly includes the boundary layer approxi-
mations based on the scaling analysis or simplifications of the
Navier–Stokes (N–S) equations by neglecting or linearizing the
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convective terms, and then solved by various methods such as sim-
ilarity solutions, series truncation methods, Fourier expansion
methods [7–12] or more recently by homotopy perturbation
method [13]. In addition to the fluid flow, few theoretical studies
are also available on the heat transfer aspects [14]. A good review
on various analytical approaches has been presented elsewhere
[15]. The main drawback of most of these analytical approaches
is that these methods are applicable either at low Reynolds num-
ber (below the flow separation) for fluid flow or at very low and/
or high Peclet number for heat transfer. Also these approaches fail
to provide the solutions for the geometries possessing geometric
singularities. This eventually necessitates full-blown numerical
simulations or experimental investigations. The numerical solu-
tions are sought based on the different approaches, e.g., finite dif-
ference, finite volume, finite element or lattice boltzmann method.
For instance, Masliyah and Epstein [16] numerically investigated
the steady and incompressible Newtonian fluid flow past a rigid
spheroid up to Reynolds number 100 by discretizing the governing
equations based on the finite difference method. Zamyshlyaev and
Shrager [17] carried out a similar kind of study as that of Masliyah
and Epstein using the stabilization method with a finite difference
variable direction scheme. Comer and Kleinstreuer [18] performed
the steady state forced convection heat transfer analysis based on
the Galerkin finite element method from an oblate spheroid. The
corresponding unsteady state heat transfer analysis from a spher-
oid was performed by Juncu [19]. On the other hand, Kishore and
Gu [20] investigated the momentum and heat transfer phenomena
in detail from heated spheroids over wide ranges of conditions as
1 6 Re 6 200; 1 6 Pr 6 1000 and 0:25 6 e 6 2:5. Not only for the
forced convection, but also there are studies available on the other

two mechanisms of heat transfer, namely, mixed [21] and free con-
vection [22] from a spheroid in Newtonian fluids. Furthermore, the
effect of wall confinement [23,24], the presence of another spher-
oid, i.e., spheroids in tandem arrangement [25,26], different angle
of attack of the flowing fluid [27] on the fluid flow and heat transfer
characteristics from a spheroid were studied in detail over wide
ranges of dimensionless parameters like Reynolds number, Prandtl
number, aspect ratio, etc.

On the other hand, many fluids of multiphase nature (e.g.,
emulsions, suspensions, foams, etc.), polymer solutions, surfac-
tants/soaps, etc., routinely used in varieties of industries, exhibit
a wide range of non-Newtonian behaviors including shear-
thinning, shear-thickening, visco-elasticity, etc., under various
operational and flow conditions [28]. In the literature, there are
various rheological models available for characterizing these
non-Newtonian behaviors, and among them the power-law and
Bingham plastic fluid models are, probably, most simplest and
widely used models for delineating the shear-thinning, shear-
thickening, and visco-plastic behavior, respectively, of the non-
Newtonian fluids. It is to be noted that for a sphere, a reasonably
fair amount of knowledge is available in the domain of momentum
and heat transfer phenomena for power-law fluids in the forced
[29], free [30] and mixed [31] convection regime, as well as for
Bingham plastic fluids in the forced [32], free [33] and mixed
[34] convection regime. In addition to this, an adequate amount
of literature is also now available for the oblate and prolate spher-
oids in non-Newtonian fluids. For instance, Tripati et al. [35,36]
investigated the effect of shear-thinning as well as shear-
thickening power-law fluid behavior on the flow phenomena
past a spheroid. The corresponding heat transfer phenomena in

Nomenclature

a semi-axis normal to the direction of flow, m
b semi-axis along the direction of flow, m
Cp;bf thermal heat capacity of base fluid, J kg�1 K�1

Cp;np thermal heat capacity of nanoparticle, J kg�1 K�1

Cp;nf thermal heat capacity of nanofluid, J kg�1 K�1

Cp pressure coefficient, dimensionless

CD total drag coefficient, ¼ FD
1
2qbf U

2
1

p
4ð2aÞ2½ �

� �
, dimensionless

CDP pressure component of drag coefficient,

¼ FDP
1
2qbf U

2
1

p
4ð2aÞ2½ �

� �
, dimensionless

CDF friction component of drag coefficient, ¼ FDF
1
2qbf U

2
1

p
4ð2aÞ2½ �

� �
,

dimensionless
D1 diameter of the outer domain, m
dnp diameter of the nanoparticle, nm
e aspect ratio, ¼ b

a

� �
, dimensionless

FD total drag force, N
FDP pressure component of drag force, N
FDF friction component of drag force, N
h heat transfer coefficient, W m�2 K�1

kbf thermal conductivity of base fluid, W m�1 K�1

knp thermal conductivity of nanoparticle, W m�1 K�1

knf thermal conductivity of nanofluid, W m�1 K�1

L reattachment length from the rear of the spheroid, m
Lr recirculation length, ¼ L

2a

� �
, dimensionless

ns unit normal vector, dimensionless
Nuh local Nusselt number, dimensionless
Nu average Nusselt number, dimensionless
N total number of elements in the computational domain,

dimensionless
Np total number of elements on the surface of the spheroid,

dimensionless

ps pressure at a point on the surface of the spheroid, Pa
p1 reference pressure far away from the spheroid, Pa
P pressure, dimensionless
Pr Prandtl number, dimensionless
Re Reynolds number, dimensionless
S surface area of the spheroid, m2

T temperature, K
DT temperature difference, ð¼ Tw � T1Þ, K
U velocity vector, dimensionless
U1 velocity at the inlet, m s�1

List of Greek symbols
j Boltzmann constant, m2 kg s�2 K�1

qbf density of base fluid, kg m�3

qnp density of nanoparticle, kg m�3

qnf density of nanofluid, kg m�3

lbf viscosity of base fluid, Pa�s
lnf viscosity of nanofluid, Pa�s
U temperature, dimensionless
/ volume fraction of nanoparticle, dimensionless
h location on the surface of the spheroid, degree

Subscripts
w condition at the surface of the spheroid
1 condition corresponds to far away from the spheroid

surface
bf base fluid
np nanoparticle
nf nanofluid

C. Sasmal, N. Nirmalkar / International Journal of Heat and Mass Transfer 96 (2016) 582–601 583



Download English Version:

https://daneshyari.com/en/article/7055905

Download Persian Version:

https://daneshyari.com/article/7055905

Daneshyari.com

https://daneshyari.com/en/article/7055905
https://daneshyari.com/article/7055905
https://daneshyari.com

