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a b s t r a c t

We investigate both theoretically and numerically the so-called invariance property, see e.g. Sun and Ma
(2015a,b), of the solution of boundary value problems associated with the anisotropic heat conduction
equation (or Laplace–Beltrami’s equation) in two dimensions with respect to elementary transformations
of the solution domain, e.g. dilations or contractions. We also show that the standard method of funda-
mental solutions (MFS) does not satisfy the invariance property. Motivated by these reasons, we intro-
duce, in a natural manner, a modified version of the MFS that remains invariant under elementary
transformations of the solution domain and is referred to as the invariant MFS (IMFS). Five two-
dimensional examples are thoroughly investigated to assess the numerical accuracy, convergence and
stability of the proposed IMFS, in conjunction with the Tikhonov regularization method (Tikhonov and
Arsenin, 1986) and Morozov’s discrepancy principle (Morozov, 1966), for Laplace–Beltrami’s equation
with perturbed boundary conditions.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Numerous natural and man-made materials cannot be consid-
ered isotropic and the dependence of the thermal conductivity
with direction has to be taken into account in the modelling of
the heat transfer. More specifically, crystals, wood, sedimentary
rocks, metals that have undergone heavy cold pressing, laminated
sheets, composites, cables, heat shielding materials for space vehi-
cles, fibre reinforced structures, and many others are examples of
anisotropic materials. Composites are also of special interest to
the aerospace industry because of their strength and reduced
weight. Consequently, heat conduction in anisotropic materials
has numerous important applications in various branches of
science and engineering and hence its understanding is of great
importance. The mathematical problems associated with anisotro-
pic heat conduction equation, also referred to as Laplace–Beltra
mi’s equation, have been the subject of numerous studies using
various numerical methods, e.g. the finite-difference method
(FDM) [1–3], the boundary element method (BEM) [4–6], the finite
element method (FEM) [2,7,8], the method of fundamental

solutions (MFS) [9–12], the singular boundary method (SBM)
[13] etc.

The MFS is a meshless boundary collocation method which
belongs to the family of so-called Trefftz methods [14,15] and is
applicable to BVPs in which a fundamental solution of the operator
in the governing equation is known. Despite this restriction, the
MFS has become very popular primarily because of the ease with
which it can be implemented, particularly for the problems in com-
plex geometries. The MFS was originally proposed by Kupradze
and Aleksidze [16] and later introduced as a numerical method
by Mathon and Johnston [17]. Since then, it has been successfully
applied to a large variety of physical problems, an account of which
may be found in the survey papers [9,18–20]. However, there exist
some heat conduction problems for which the simple application
of the MFS is not sufficient to obtain an accurate numerical solu-
tion, e.g. problems related to domains containing a boundary sin-
gularity generated by the presence of a crack or a V-notch, and
hence the standard MFS has to be modified/enriched.

In the case of isotropic heat conduction problems (i.e. boundary
value problems for Laplace’s equation), Alves and Leitao [21] pro-
posed an enriched MFS to simulate the presence of a crack, whilst
Marin [22] employed the MFS in conjunction with the correspond-
ing singular solutions as given by the asymptotic expansion of the
solution near the singular point. Saavedra and Power [23,24] added
a constant to the standard MFS approximation for isotropic heat
conduction problems, at the same time mentioning that this
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constant is necessary to be added in particular for two-dimensional
problems because of completeness issues. Chen et al. [25] also
modified the standard MFS formulation for both interior isotropic
heat conduction problems with a degenerate-scale domain and
exterior problems for Laplace’s equation with a bounded solution
at infinity by adding a constant together with a constraint. This
enrichment used in [25] is required for obtaining a unique solution
of the problems considered.

Recently, Sun and Ma [26,27] proposed a modified MFS for iso-
tropic heat conduction problems in two dimensions, referred to as
the invariant MFS (IMFS), which also preserves the invariance
property as the exact solution of the problem undergoes elemen-
tary transformations, e.g. dilations, contractions. Therefore, it is
the purpose of this paper to extend the IMFS proposed in [26,27]
to anisotropic heat conduction problems with exact and noisy
boundary conditions, as well as implement and investigate the per-
formance of the IMFS for such problems.

The paper is organised as follows: In Section 2 we formulate
mathematically the problem under investigation. The invariance
property of the solution of anisotropic heat conduction problems
with respect to dilations/contractions is introduced and proved in
Section 3. Section 4 is devoted to the brief description of the stan-
dard MFS and the introduction of its modified version that also sat-
isfies the invariance property. The Tikhonov regularization
method, as well as Morozov’s discrepancy principle for selecting
an appropriate regularization parameter, are briefly described in
Section 5. The accuracy, convergence and stability of the numerical
results obtained using the proposed IMFS are thoroughly analysed
for five two-dimensional examples in Section 6. Finally, some con-
cluding remarks are made in Section 7.

2. Mathematical formulation

Consider a bounded connected domain X � R2 occupied by an
anisotropic solid characterised by the homogeneous, symmetric
and positive-definite thermal conductivity tensor K ¼ Kij

� �
16i;j62 2

R2�2, i.e.

K> ¼ K; ð1aÞ

n � Kn P 0; 8n 2 R2; n � Kn ¼ 0 () n ¼ 0: ð1bÞ
We also assume that X is bounded by a smooth or piecewise
smooth curve @X, such that @X ¼ C1 [ C2, where C1 –£;C2 –£
and C1 \ C2 ¼ £.

In the absence of heat sources, the temperature distribution, u,
in the domain X satisfies the following elliptic partial differential
equation, also referred to as the anisotropic heat conduction equa-
tion, see e.g. [2],

�r � KruðxÞð Þ � �
X2
i;j¼1

Kij@i@juðxÞ ¼ 0; x 2 X; ð2Þ

where @j � @=@xj. We now let nðxÞ be the unit outward normal vec-
tor at x 2 @X and qðxÞ be the normal heat flux at a point x 2 @X
defined by, see e.g. [2],

qðxÞ ¼ �nðxÞ � KruðxÞð Þ � �
X2
i;j¼1

niðxÞKij@ juðxÞ; x 2 @X: ð3Þ

In the direct problem formulation, the anisotropic heat conduction
Eq. (2) is solved together with appropriate Dirichlet, Neumann, or
Robin boundary conditions to obtain the temperature distribution
in the solution domain X, as well as the corresponding unknown
boundary conditions. More specifically, herein we assume the fol-
lowing boundary conditions attached to Eq. (2):

(a) Dirichlet boundary conditions (i.e. prescribed temperature)

uðxÞ ¼ euðxÞ; x 2 @X; ð4aÞ
(b) Neumann boundary conditions (i.e. prescribed normal heat
flux)

qðxÞ ¼ eqðxÞ; x 2 @X; ð4bÞ
(c) mixed boundary conditions (i.e. prescribed temperature and
normal heat flux)

uðxÞ ¼ euðxÞ; x 2 C1; and qðxÞ ¼ eqðxÞ; x 2 C2;

ð4cÞ
where eu is the prescribed boundary temperature on @X or C1

according to case (a) or (c), whilst eq is the prescribed normal heat
flux on @X or C2 according to case (b) or (c).

We have decided not to investigate Robin boundary conditions
herein since the latter represent a linear combination of Dirichlet
and Neumann boundary conditions prescribed on the same seg-
ment of the boundary and, consequently, they do not bring any
additional information to the present study. Moreover, we also
assume in this paper that the boundary conditions related to cases
(a)–(c) and associated with the anisotropic heat conduction prob-
lem (2) are noisy and this corresponds to real life problems
encountered in practice.

3. Invariance property of solution

Without any loss of the generality, we further consider the
Dirichlet problem associated with the anisotropic heat conduction
equation in a simply connected domain X � R2 with a smooth
boundary @X given by Eqs. (2) and (4a), namely

�r � KruðxÞð Þ ¼ 0; x 2 X

uðxÞ ¼ euðxÞ; x 2 @X:

�
ð5Þ

It is well-known that problem (5) has a unique solution u 2 H1ðXÞ,
provided that eu 2 H1=2ð@XÞ, see e.g. [28], and this unique solution of
problem (5) admits the following double-layer representation in the
solution domain, see e.g. [29,30]:

uðxÞ ¼
Z
@X

nðyÞ � KryGðx; yÞ
� �� �

uðyÞdCðyÞ; x 2 X; ð6Þ

where u 2 Hað@XÞ is a charge/surface density and G is a fundamen-
tal solution of the anisotropic heat conduction Eq. (2). Here, a P 0
and we make the convention H0ð@XÞ � L2ð@XÞ.

By employing the jump conditions for representation (6) and
the Dirichlet boundary condition associated with problem (5),
one obtains the following double-layer representation on the
boundary of the solution domain, see e.g. [29,30]:Z
@X

nðyÞ � KryGðx; yÞ
� �� �

uðyÞdCðyÞ � 1
2
uðxÞ ¼ euðxÞ; x 2 @X:

ð7Þ
We note that relation (7) actually represents a boundary integral
equation for determining the unknown charge/surface density, u.

Consider the operator defined by

K : Hað@XÞ�!Hað@XÞ; u 2 Hað@XÞ#Ku 2 Hað@XÞ; ð8aÞ

where a P 0 and

Kuð Þð�Þ : @X�!R;

Kuð ÞðxÞ :¼
Z
@X

nðyÞ � KryGðx; yÞ
� �� �

uðyÞdCðyÞ; x 2 @X: ð8bÞ
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