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a  b  s  t  r  a  c  t

Active  instantaneous  currents  are  generally  defined  as  those  compensated  supply-wire  currents  that
deliver  a given  instantaneous  power  with  minimum  line  losses,  without  a change  in  voltage.  Since  the
concept  was  introduced  60 years  ago,  many  theories  have  been  proposed  to enable  the  calculation  of
those optimum  supply  currents,  for various  conditions  of the  supply  system.  This  paper  shows  how  these
optimal  wire  currents  can  be  obtained  with  a  single  general  formula  applicable  to  all  supply  systems.
The  solution  depends  on  the number  of  wires  considered,  their  resistances,  which  need  not  be equal,
and  their  respective  voltages  measured  from  a common  reference.  The  formula  is derived  through  the
properties  of  linear  algebra  in  vector  space,  and  is a direct  consequence  of  Kirchhoff’s  current  law  and  the
law  of conservation  of  energy.  All  the existing  theories  can be  identified  as  particular  cases  of the general
formula  and  most  can  be grouped  into  three  common  categories.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Common power theory concepts, such as apparent power and
reactive power developed in the first part of the 20th century, have
been of great benefit in modelling symmetrical, sinusoidal systems
in electrical engineering. However, with the increasing presence
of nonlinear loads, conventional power theory is sometimes inad-
equate or incorrect when applied to systems with unbalance,
distortion or direct current components. Various approaches have
been proposed to meet these conditions. Standards and definitions
have been adopted and revised [1,2], but inconsistencies still have
technical and financial consequences for power systems design,
metering, and quality of supply regulation.

Two approaches have dominated power theory development
in the last 60 years: instantaneous power and average power. So-
called instantaneous collective power theory was  introduced by
Buchholtz [3] and taken up by Depenbrock [4],  but both were ini-
tially not widely known. Another instantaneous power theory was
popularised by Akagi et al. in 1983 [5] and spurred many publica-
tions and debates, in which authors reformulated Akagi’s theory,
offered other instantaneous theories, or extended the instanta-
neous power theories into the average power domain. Other
researchers based their theory on average power and the frequency
domain, and have even questioned whether instantaneous power
theories can be extended accurately to the average power domain
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[6].  Generally, all these power theories decompose the load cur-
rents into a component contributing active (“useful”) current and
one or more non-active1 (“useless”) current components that can
be provided by a local compensator, thereby reducing the trans-
mission losses – which is the main justification for the continuing
interest in power theory.

Building on and extending initial work by Malengret and Gaunt
[7] and Malengret [8] on 3- and 4-wire systems, this paper reviews
the existing theories, presents a general theory of instantaneous
power for systems with any number of wires of any resistance,
and shows that all the other instantaneous power theories are
particular cases of the general theory. Using the same mathemat-
ical approach, a companion paper [9] extends this general theory
of instantaneous power to the domain of average power for sys-
tems with any number of wires of any resistance, formulating an
internally consistent general power theory valid for instantaneous
and average power. A further companion paper [10] describes the
implementation of the general power theory in practical measure-
ment circuits and discusses some implications for power systems.

2. Early definitions of power for single-phase systems

Active power P supplied by a periodical voltage source to a
single-phase load is the average power over an observation time
T, the duration of one cycle or an integer number of cycles, given

1 Due to controversy over the term “instantaneous reactive power”, most publi-
cations now refer to non-active current or “useless current” and non-active power.
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by P = 1/T
∫

Tu(t)i(t)dt = 1/T
∫

Tp(t)dt where p(t) = u(t)i(t) and can be
regarded as the time rate of energy transfer or consumption, u(t) is
the voltage between the two wires, and i(t) the current in them.

When the voltage and current are sinusoidal, it can be shown for
a single phase supply that the average power P is the product of the
rms  value of the voltage and current, U and I respectively, multi-
plied by the cosine of the angle between the voltage and the current,
which is also known as the power factor (p.f.), so that P = UI cos ϕ.
When the waveforms are not sinusoidal and periodic, they can be
expressed as a Fourier series and it can be shown from Fourier anal-
ysis that the average power P is the sum of the individual harmonic
powers.

There is no controversy about the definition of average power;
also apparent power in single phase systems has a unique and
invariant value for any particular current and voltage waveform.
However apparent power and ‘reactive’ powers are not based on a
single well defined physical phenomenon, only on similar models.

For sinusoidal voltages and currents, reactive power (also
known as non-active power, imaginary power or “useless” power
as it does not contribute to the average power used by a load)
is defined as Q = UI sin ϕ, and apparent power as S = UI,  with a
Pythagorean relationship S2 = P2 + Q2 in which Q can be assigned
a positive or negative value by convention. In the case of non-
sinusoidal single phase waveforms, the definition for apparent
power S is also S = UI where U and I are the rms  values of u(t) and i(t)
respectively, but the non-active power has been defined in various
ways by different researchers.

An early idea of reactive power Q in non-sinusoidal single-phase
systems was introduced by Fryze in 1932 [11] and recommended
50 years later by the International Electrotechnical Commission [1].
According to Fryze, if u(t) is the voltage of a single-phase system,
then the source current i(t) can be decomposed in the time domain
into components ia(t) and ib(t). ia(t) is defined as ia(t) = (P/U2)
u(t) = Gu(t) where P is the average power supplied to a load dur-
ing an interval T, U is the rms  value of the voltage applied to the
load, and conductance G = P/U2. The remaining current ib = i(t) − ia(t)
makes no contribution to the average power. Using S = UI,  and defin-
ing Q = UIb, it can be shown that S2 = P2 + Q2, thereby defining Q
without the use of Fourier series. Q can be regarded as represent-
ing a measure of the under-utilisation of a single-phase system, but
it has no physical interpretation equivalent to a sinusoidal single
phase system.

Thus, Fryze introduced the concept that ia(t) is proportional and
in phase with the voltage, and is optimum in the sense that it can be
shown mathematically that no other current would result in lower
line losses while delivering the same power at the same voltage.
Further, the conductance G is a constant term based on average
power, although at the time there was no distinction between aver-
age and instantaneous power that has been taken up by subsequent
researchers in a similar form as an instantaneous term with a sim-
ilar meaning.

3. Extending single phase theory to instantaneous power in
multi-phase systems

Although three phase, 3- and 4-wire systems were in common
use, it was nearly 20 years before Fryze’s single phase definition
of non-active power was extended to poly-phase systems, and it is
useful to review some of the contributions made by the instanta-
neous power theories that followed.

3.1. Buchholtz’ instantaneous power

Buchholtz appears to have been the first to extend Fryze’s
approach to polyphase systems. Based on Fryze’s concept for active

currents in single phase systems, Buchholtz [3] formally introduced
the concept of the instantaneous collective values of current and
voltages. In a system with M phases, he defined the instantaneous
active current of the vth wire, ivp = gpuv, as proportional to the con-
ductance gp and a voltage uv, which can be calculated at any instant,
from the instantaneous values of voltages and currents. The neutral
wire was not defined as the reference for the voltage measure-
ments, and uv is calculated from the voltage differences between
the wires, so is independent of the voltage reference chosen. The
theory can be applied to any number of wires, but it is not clear that
it provides an optimum solution (in the sense that the transmission
losses will be minimum after compensation), as no mathematical
proof is given.

Buchholtz’ instantaneous power theory was not well known,
apart from Depenbrock who included it in 1962 in what he called
the FBD power theory [4]. Buchholtz’ and Depenbrock’s work was
published in German initially and was only appreciated more
widely when it appeared in English publications from 1993 [12–15].

3.2. Akagi’s instantaneous p–q theory

Apparently unaware of Buchholtz’ instantaneous current theory
in poly-phase systems, Akagi et al. [5,16] proposed a time domain
theory for three-phase systems called the p–q instantaneous power
theory, introducing a new electrical quantity q called instantaneous
reactive power.

Akagi began by defining voltage and current vectors Eabc and Iabc
and transformed them to the 0–˛–  ̌ reference frame:

E0˛ˇ = {e0, e˛, eˇ}T = AEabc and I 0˛ˇ = {i0, i˛, iˇ}T = AIabc (1)

where
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The instantaneous power is p = eaia + ebib + ecic, and the original
theory defines two  instantaneous real power components p0 and
p˛ˇ and one instantaneous imaginary power q˛ˇ, calculated as:[
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(2)

This leads to the decomposition of the currents into three 0–˛–ˇ
components in each phase, from which the compensating currents
can be found and transformed back into the abc reference frame
using the inverse matrix of A. An active filter requiring no instan-
taneous real power can supply compensating currents that are the
non-active components of the load current. The compensated sup-
ply current still supplies the real power, with reduced line losses.

The p–q theory attracted interest because reactive power was
normally attributed only to sinusoidal waveforms at that time. The
transform’s appearance was  familiar to many electrical engineers,
and was  of immediate benefit in that it enabled calculation in real
time of compensating currents for active filters without energy
storage. The theory was  applied to 3-phase, 3- and 4-wire sys-
tems, and gives the same result as Buchholtz’ approach with m = 3.
However, in 4-wire systems Akagi’s resultant neutral current was
zero, different from Buchholtz’ approach with m = 4, and this draws
attention to the lack of a mathematical justification that either
solution provided optimum compensation.

3.3. Willems’ vector approach

Willems [17,18] proposed a more direct formula than Akagi’s to
calculate instantaneous current components. His approach is that



Download	English	Version:

https://daneshyari.com/en/article/705602

Download	Persian	Version:

https://daneshyari.com/article/705602

Daneshyari.com

https://daneshyari.com/en/article/705602
https://daneshyari.com/article/705602
https://daneshyari.com/

