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a b s t r a c t

Lagrangian investigations of vortex dynamics, including Lagrangian Coherent Structures (LCS) and parti-
cle trajectory, are conducted to highlight the mechanisms of cloud cavitating flows around a Clark-Y
hydrofoil. Numerical simulations are performed using a transport equation-based cavitation model and
the large eddy simulation (LES) approach. Good agreements are observed between numerical predictions
and experimental measurements, including time-averaged turbulence statistics, velocity, vorticity pro-
files and the periods of unsteady shedding process of the vortex structures near the trailing edge.
Besides, present numerical predictions are capable of capturing the unsteadiness of cloud cavitation,
including the initiation, growth toward the trailing edge and subsequent shedding of cavities. Based
on the Lagrangian analysis of vortex dynamics in non-cavitating flows, two LCSs, namely LE-LCS and
TE-LCS, are defined. In cloud cavitating flows, distributions of the two LCSs in different cavitation devel-
oping stages illustrate different behaviors of vortex structures. (a) In the attached sheet cavity growing
stage, the LE-LCS extends to the trailing edge, which implies the expansion of the attached sheet cavity,
and the TE-LCS rolls up and extends downstream, which implies the detachment of cloud cavity. In addi-
tion, particle tracers indicate that the Leading edge vortex (LEV) is enhanced by the attached sheet cavity,
and there is no direct interaction between attached cavity’s expansion and cloud cavity’s shedding. (b) In
the re-entrant jet developing stage, the LE-LCS and TE-LCS connect together near the middle of the hydro-
foil, which implies that two vortex structures mix together inside of the stable attached cavity. Particle
tracers clearly show the re-entrant jet flow and the unsteadiness of the vortex structures inside of the
stable attached cavity. Furthermore, trapped particles tracers indicate the semi-Vortex Street in the wake,
which is induced by the resistance effect from the stable cavity on the partial shedding of the LEV. (c) In
the cloud cavity shedding stage, no connection between the LE-LCS and TE-LCS can be observed near the
middle part of the hydrofoil, which implies the break-up of vortex structures inside the attached cavity.
Meanwhile, particle tracers show the breakup of vortex structure inside the attached cavity, as well as the
shedding process of the rear part, which is enhanced by the detached cloud cavity.

� 2015 Published by Elsevier Ltd.

1. Introduction

Cavitation is a dynamic phase-change phenomenon that occurs
in liquids when the static pressure drops below the vapor pressure
of liquid [1,2]. It is well known that the unsteady cavitation in
turbo-machinery and marine control surfaces will lead to problems
such as material damage, vibration, noise and reduced efficiency
[3,4]. A particularly important form of cavitation is that on the suc-
tion side of lifting surfaces. At typical angles of attack, as the local
pressure reduces, lifting surfaces cavity structures change from
localized, instantaneous pressure drops typical of inception

cavitation [5], to sustained, time-dependent cavities typical of
sheet, cloud, and super-cavitation [6–9].

Highly vortical fluid motion is often observed downstream of
the attached cavitation. This motion is caused by vorticity shed-
ding into the flow field slightly downstream of the cavity. Such vor-
tex cavitation generates a large cavitation cloud under certain
conditions [10]. It has been proven that the cloud cavitation is a
large-scale vortex with many small cavitation bubbles [11,12]. In
addition, various studies have demonstrated the strong correlation
between cavitation and vortex structures. Gopalan and Katz [13]
observed that the collapse of the vapor structure is a primary
mechanism of vorticity production and leads to the generation of
hairpin vortices in the downstream region. Iyer and Ceccio [14]
and Laberteaux et al. [15] found that the stream-wise velocity
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fluctuations increased with increased cavitation, which confirms
that the collapse of the vapor cavities is a source of vorticity gen-
eration. Additionally, Dittakavi et al. [16] and Huang et al. [17,18]
discussed the influence of cavitation on different terms of vorticity
transport equation, and found that the periodic formation,
breakup, shedding, and collapse of the sheet/cloud cavities, and
the associated baroclinic and viscoclinic torques, are important
mechanisms for vorticity production and modification. Ji et al.
[19–22] also analyzed the three-dimensional cavity structures
around a twisted hydrofoil, and the detail analysis using the vortic-
ity transport equation showed the cavitation accelerates the vortex
stretching and dilatation and increase the baroclinic torque as the
major source of vorticity generation.

Strong correlations between cavitation and vortex structures in
cavitating flows highlight the importance of better understanding
of unsteady vortex behaviors. During these years, many popular
and powerful Lagrangian techniques have been developed to high-
light unsteady vortex structures [23–25]. Among these methods,
Lagrangian Coherent Structures (LCS) are widely used formany out-
standing advantages [26–28]. Lipinski and Mohseni [29], Shadden
et al. [30] andFranco et al. [31] used the LCS to examunsteadyvortex
flows produced by halobios, results of which revealed a well-
defined, unsteady recirculation zone that is not apparent in the cor-
responding classical Eulerian fields. Besides, Green et al.’s research
[32] on turbulent flows demonstrated that the LCS method could
define time-dependent vortex structure boundarieswithout relying
on a pre-selected threshold, and presented greater visible details
without the requirement of velocity derivatives. Although Tang
et al. [33] utilized the LCS method to flow dynamics and underlying
physics of unsteady turbulent cavitating flows, no further mecha-
nism about vortex–cavitation interrelations was discussed.

The objective of this paper is to investigate the vortex dynamics
and vortex–cavitation interactions in unsteady cloud cavitating
flows. The aims are to (1) utilize Lagrangian based methods onto
cloud cavitating flows, and assess their ability to analyze cloud cav-
itating vortex structures, (2) improve the understanding of
unsteady vortex structure behaviors in cloud cavitating flows, (3)
provide an insight of the vortex–cavitation interrelations in cloud
cavitating flows. In the present paper, summary of the Lagrangian
methods are presented in Section 2. Numerical setups and valida-
tions are shown in Sections 3. In Section 4, Lagrangian investiga-
tions of unsteady vortex behavior in non-cavitating flows are
firstly presented, followed by detailed analysis of time evolutions
of unsteady cavitation, vortex structures and the vortex–cavitation
interrelations in cloud cavitating flows.

2. Lagrangian coherent structures

Haller and Yuan [34] developed the LCS approach from a
Lagrangian perspective by considering the fluid as a dynamical sys-
tem of fluid particles rather than a continuum. A clearer presenta-
tion of the theory and computation details of the LCS has been
established by Shadden et al. [30], enabling this method to become
more useful to evaluate the flow structures in a wide range of
scope. Considering two points x0 and x0 + dx0, each of which will
generate a trajectory in the space. Use one of the trajectories as a
reference, the divergence between the two trajectories can be writ-
ten as a function of the time and the initial location with the form
of dx(x0, t). The mean exponential rate of separation of two close
trajectories can be computed by using the following formula,

r ¼ lim
t!1

jdx0 j!0

1
t
ln

jdxðx0; tÞj
jdx0j ; ð1Þ

r is the Lyapunov Exponent. The Lyapunov Exponent of a dynamic
system is a quantify that characterizes the rate of separation of

infinitesimally close trajectories. The finite time version of the
Cauchy-Green deformation tensor, D, at the given point x0 is defined
as,

DTL E
t0

ðx0Þ ¼ @xðt0 þ TL E; t0; x0Þ
@x0

� �T
@xðt0 þ TL E; t0; x0Þ

@x0
; ð2Þ

where ðÞT is the transpose of the deformation gradient tensor. The

maximum eigenvalue of DTL E
t0

ðx0Þ is defined as kmax DTL E
t0

ðx0Þ
� �

. It

represents the maximum stretching, and the corresponding eigen-
value provides the direction and vector, which dx0 will align to.
Then the largest finite-time Lyapunov Exponent with a finite inte-
gration time TL_E is defined as:

rTL E
t0

ðx0Þ ¼ 1
jTL Ej ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmax DTL E

t0
ðx0Þ

� �r
: ð3Þ

The Finite-time Lyapunov Exponent (FTLE) represents the max-
imum stretching rate for infinitesimal close particles. Ridges in the
FTLE field are named as LCS. It is shown that the LCS can define
structure boundaries without relying on a preselected threshold
and present greater visible details without the requirement of
velocity derivatives. Computation details can be read in Ref. [34].

3. Numerical setup and description

The turbulent cavitating flows are solved using the unsteady
Navier–Stokes equations coupled with the large eddy simulation
(LES) and a mass transfer cavitation model.

3.1. Governing equations and large-eddy simulation approach

In the mixture model of the vapor/liquid two-phase flow, the
multiphase components are assumed to have the same velocity
and pressure. The governing equations consist of the mass and
momentum conservation equations:

@qm

@t
þ @ðqmujÞ

@xj
¼ 0; ð4Þ

@ðqmuiÞ
@t

þ @ðqmuiujÞ
@xj

¼ � @p
@xi

þ @

@xj
lm

@ui

@xj

� �
; ð5Þ

@qlal

@t
þ @ðqlalujÞ

@xj
¼ _mþ þ _m�: ð6Þ

Here u is the velocity, p is the pressure, ql is the liquid density, qv is
the vapor density, av is the vapor fraction, al is the liquid fraction.
The source term _mþ; and the sink term _m� represent the condensa-
tion and evaporation rates, respectively. The mixture density qm

and dynamic viscosity lm are defined as:

qm ¼ qlal þ qvav ; ð7Þ

lm ¼ llal þ lvav : ð8Þ
Applying a Favre-filtering operation to Eqs. (4) and (5) gives the

LES equations,

@qm
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where over bar denotes a filtered quantity. By comparing Eq. (10)
with Eq. (5), an extra nonlinear term, sij, which is called the
sub-grid scale (SGS) stress, is expressed as:

sij ¼ uiuj � �ui�uj: ð11Þ
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