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a b s t r a c t

We demonstrate that instability in enclosed horizontally driven convection is due to a convective
buoyancy-driven transverse-roll instability resembling the classical Rayleigh–Bénard convection in the
thermal forcing boundary layer rather than a shear instability in the corresponding kinematic boundary
layer. Instability growth is weakly sensitive to the local velocity profile, with velocity shear acting to
select a transverse roll mode in preference to longitudinal rolls. The convectively unstable region grows
from the hot end of the forcing boundary with increasing Rayleigh number two orders of magnitude
lower than the natural onset of unstable horizontal convection. This analysis highlights the importance
of the thermal boundary layer to the instability dynamics of horizontal convection, elucidating the path
towards an understanding of turbulence and heat transport scaling in horizontal convection at oceanic
Rayleigh numbers.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The emergence of instability in enclosed horizontally driven
convection (HC) — where an overturning fluid heated unevenly
across a horizontal boundary transitions from a steady state —
marks a key threshold in the response of this fundamental class
of natural convection flows to increased strength of thermal forc-
ing. The source of this instability remains unknown, despite its sig-
nificance to debate around the existence of turbulence in
horizontal convection flows, and its role in determining the scaling
of horizontal convection towards oceanic scales.

Horizontal convection may contribute to global overturning in
Earth’s oceans, though extrapolation of the scaling between hori-
zontal convective heat transport and thermal forcing from theory
and experiment falls several orders of magnitude below accepted
oceanic values. Rossby [1] argued that a balance between horizon-
tal convection of heat within the forcing boundary layer, and ver-
tical diffusion of heat through the forcing boundary, will produce
a 1=5th-power scaling for Nusselt number (characterising convec-
tive heat transport) with Rayleigh number (characterising the
strength of thermal forcing). This has been supported by
experiment [2,3] and simulation [4–6], but evidence from
high-resolution simulations [7] at Rayleigh numbers greater than
1010 has indicated that instability increases the rate of scaling,
which has a theoretical upper bound of 1=3rd [4].

Here we show via a linear stability analysis applied to one-
dimensional velocity and temperature profiles (obtained from
high-order simulations of horizontal convection flows) that insta-
bility originates as a thermally driven instability of the boundary
layer on the forcing boundary; similar analysis has proved very
successful in characterising global or convective instability in
extensively studied canonical flows such as Rayleigh–Bénard con-
vection (RBC; fluid between two horizontal plates heated from
below), and Rayleigh–Bénard–Poiseuille flow (RBP; RBC with a
horizontal through-flow). Weber [8] showed, for a shear flow both
heated from below and driven horizontally by a horizontal thermal
gradient, that the preference for longitudinal or transverse rolls
was dependent on the Prandtl number, stronger horizontal thermal
forcing led to oscillatory instability, and that the main instability
mechanism had a thermal origin for low-to-moderate horizontal
thermal forcing [8–10]. Sun et al. [11] subsequently investigated
the instability mechanism of HC flows. Their numerical experiment
involved thermal forcing at the centre as well as side-wall forcing
with two circulating cells. They concluded that velocity shear
instability rather than thermal instability is responsible for the
unsteady HC flow through a Hopf bifurcation with a critical Ray-
leigh number of 5:5377� 108 at Prandtl number Pr ¼ 1. In contrast
to [11], we consider HC in water [12–14] with a single overturning
cell, and a Prandtl number Pr ¼ 6:14. At this Prandtl number, King
[7] showed that horizontal convection in enclosures with height-
to-length aspect ratio H=L P 0:16 driven by a linearly increasing
temperature profile along the base became unstable to unsteady
flow at 3:5� 108 KRaK8:5� 108.
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More recently, Gayen et al. [6] used a mechanical energy budget
to explain the transition of horizontal convection from small scales
of motion driven mainly by thermal convection to a shear
instability of the large-scale flow at high Rayleigh number. The
three-dimensional direct numerical simulation in that study was
carried out in an enclosure with aspect ratio H=L ¼ 0:16 at a
Prandtl number Pr ¼ 5, with horizontal convection driven by a
step-change in temperature at half the horizontal distance along
the base. The same setup was considered at a range of Rayleigh
numbers in [15], elucidating a complex instability pathway
for horizontal convection: stable, laminar overturning flow was
produced at Rayleigh number Ra ¼ 5:86� 107, while at
Ra ¼ 5:86� 108 unsteady two-dimensional (transverse) rolls were
detected in the boundary layer near the hot end of the enclosure.
At a higher Rayleigh number Ra ¼ 5:86� 109, these structures
were more closely spaced and visible from further upstream, and
at Ra ¼ 5:86� 1010 and 5:86� 1011 the two-dimensional struc-
tures were superposed by longitudinal-roll structures appearing
at approximately mid-way along the base. The longitudinal struc-
tures were dominant at the higher Rayleigh number, and began
merging and interacting approximately two-thirds of the distance
along the base, before erupting into mushroom plumes closer to
the end-wall. These findings point to the source of instability in
horizontal convection as a convective instability in the boundary
layer, and the present work aims to elucidate this instability mech-
anism via a local one-dimensional (1D) linear stability analysis. We
will show that this analysis reveals the instability to be thermally
driven.

2. Numerical setup

The system comprises a rectangular enclosure of width L and
height H aligned with Cartesian coordinates x and y, respectively,
with z the transverse coordinate. The flow is driven by a time-
invariant temperature profile increasing linearly in x imposed along
the bottom of the enclosure. The side and top walls are insulated
(zero normal gradient of temperature), and a no-slip (zero velocity)
condition is imposed on the velocity field on all walls. Taking the
temperature difference imposed across the forcing boundary dh,
volumetric expansion coefficient aT , gravitational acceleration g,
kinematic viscosity m and thermal diffusivity jT , the characteristics
and strength of this circulation are determined by a Rayleigh
number Ra ¼ aTg dhL

3=mjT and Prandtl number Pr ¼ m=jT charac-
terising the strength of thermal forcing and the ratio of molecular
to thermal diffusivity, respectively. We adopt a Boussinesq approx-
imation for buoyancy, in which density differences in the fluid are
neglected except through the gravity term in the momentum equa-
tion. Under this approximation the energy equation reduces to a
scalar advection–diffusion equation for temperature which is
evolved in conjunction with the velocity field governed by the
incompressible Navier–Stokes equations. Introducing velocity
vector u with components u;v and w respectively in x; y and z, a
pressure p and temperature h, and normalising length, velocity,
time, pressure and temperature by L;jT=L; L

2=jT ;qj2
T=L

2 and dh
permits the governing equations to be expressed as

@tuþ ðu � rÞu ¼ �rpþ Prr2u� PrRa ĝh; ð1Þ

Nomenclature

A generalised eigenvalue matrix (left-hand side)
B generalised eigenvalue matrix (right-hand side)
D operator representing partial derivative with respect

to y
f generic symbol representing a horizontally parallel flow

variable (e.g. velocity, pressure or temperature)
~f generic symbol representing a perturbation flow vari-

able
f B generic symbol representing a horizontally parallel base

flow variable
g gravitational acceleration
ĝ unit vector in direction of gravity
H enclosure height
i imaginary unit
~h eigenfunction of infinitesimal temperature perturbation
k total wavenumber, k2 ¼ a2 þ b2

L enclosure width; characteristic length of thermal forc-
ing for horizontal convection

p pressure
~p eigenfunction of infinitesimal pressure perturbation
pB pressure, base flow
Pr Prandtl number, Pr ¼ m=j, here Pr ¼ 6:14 throughout
Ra Rayleigh number based on imposed temperature differ-

ence across heated horizontal boundary
Rac critical Rayleigh number
Rac;m critical marginal Rayleigh number
t time
u velocity vector
u horizontal velocity component
~u eigenfunction of infinitesimal horizontal velocity per-

turbation
uB horizontal velocity component, base flow

v vertical velocity component
~v eigenfunction of infinitesimal vertical velocity perturba-

tion
w transverse (out-of-plane) velocity component
~w eigenfunction of infinitesimal transverse velocity per-

turbation
x Cartesian horizontal coordinate
xk eigenvector, concatenation of collocation-point values

of ~v and ~uh
y Cartesian vertical coordinate
z Cartesian transverse (out-of-plane) coordinate

Greek symbols
a travelling wave number in horizontal (x) direction
ac critical horizontal travelling wave number
aT volumetric thermal expansion coefficient
b travelling wave number in transverse (z) direction
d an arbitrary small constant
dh temperature difference imposed across horizontal

boundary
jT fluid thermal diffusivity
k1D predicted horizontal wavelength of instability from 1D

linear stability analysis
k2D horizontal wavelength of disturbance from two-

dimensional simulation
m fluid kinematic viscosity
h fluid temperature
hB fluid temperature, base flow
x complex eigenvalue representing growth rate and fre-

quency of an instability eigenmode
xi imaginary part of complex eigenvalue x
xr real part of complex eigenvalue x

510 T. Tsai et al. / International Journal of Heat and Mass Transfer 94 (2016) 509–515



Download English Version:

https://daneshyari.com/en/article/7056056

Download Persian Version:

https://daneshyari.com/article/7056056

Daneshyari.com

https://daneshyari.com/en/article/7056056
https://daneshyari.com/article/7056056
https://daneshyari.com

