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a b s t r a c t

Heat transfer in fractal materials is considered in the framework of continuous models with non-integer
dimensional spaces. We use a recently proposed vector calculus in non-integer dimensional spaces to
describe heat flow in fractal materials. Solutions of the steady heat flow in fractal pipe and rod are
derived.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A main characteristic of fractal materials is non-integer physical
dimensions such ‘‘particle” and mass dimensions [1,2]. A descrip-
tion of heat transfer in fractal media is important to determine
physical properties of materials [3–9]. Fractal media can be
described in the framework of continuous models are based on
the concept of density of states of power-law type [2]. Continuous
models for fractal distributions of particle, media and fields have
been proposed in [10,11,2], and then these models have been
developed by Ostoja-Starzewski [12–14] and other scientists. The
continuous models of fractal materials can use tools of integration
and differentiation for a non-integer dimensional space [21–23],
which were recently developed in [15,16].

The integration over non-integer dimensional spaces (NIDS) has
a wide application in quantum field theory [21] for the dimen-
sional regularization of ultraviolet divergences. A generalization
of integration for NIDS is proposed by Stillinger in [22], and then
it has been generalized by Palmer and Stavrinou [23] by using pro-
duct measure method. The scalar Laplace operators for NIDS also
has been proposed in [22,23]. Papers [22,23] consider only the
scalar Laplacian for NIDS. The first order NIDS-operators such as
gradient, divergence, curl operators and the vector Laplacian [24]
are not considered in [22,23]. A possibility to use only the scalar
Laplacian greatly restricts us in application of continuous models
for fractal materials. Recently, a vector calculus for NIDS, where
the first and second orders differential vector operations such as
gradient, divergence, the scalar and vector Laplace operators for

NIDS, have been proposed in [15,16]. The suggested calculus allows
us to describe fractal materials, for which the volume dimension D
of the material region and the dimension d of boundary of this
region are not related by the equation d ¼ D� 1. The suggested
NIDS vector calculus has been used to describe fractal media by
continuous models in the elasticity theory of fractal material
[17], the fractal electrodynamics [18,19], and the fractal hydrody-
namics [20]. In this paper, we consider the heat flow in fractal pipe
and rod. We solve the corresponding heat transfer equation for
fractal material in the general isotropic case, where the condition
d ¼ D� 1 for volume (‘‘D”) and boundary (d) fractal dimensions
is not used.

2. Heat transfer equation of fractal materials

A basic characteristic of fractal materials is the non-integer
dimensions such as mass or ‘‘particle” dimensions [2]. For fractal
materials the number of particles NDðWÞ or mass MDðWÞ in any
region W � R3 of this material increase more slowly than the
3-dimensional volume V3ðWÞ of this region. For the ball region
W with radius R in an isotropic fractal material, this property can
be described by the relation between the number of particles
NDðWÞ in the region W of fractal material, and the radius R in the

form NDðWÞ ¼ N0ðR=R0ÞD, where R0 is the characteristic size of frac-
tal material such as a minimal scale of self-similarity, and D is the
‘‘particle” dimension. If the fractal material consists of particles
with identical masses m0, then the relation NDðWÞ ¼ N0ðR=R0ÞD
can be represented in the form MDðWÞ ¼ M0ðR=R0ÞD, where
M0 ¼ m0N0. In this case, the mass dimension coincides with the
‘‘particle” dimension. The parameter D does not depend on the
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shape of the region W. Therefore fractal materials can be consid-
ered as a material with non-integer ‘‘particle” or mass dimension.
An idealized model of fractal material is a medium distributed in
empty space R3 with non-integer mass dimension D < 3. The frac-
tal material can be considered as a fractal porous solid material.

For simplification, we consider scalar fields T and vector fields q
that are independent of angles TðrÞ ¼ TðrÞ, qðrÞ ¼ qðrÞ ¼ qrðrÞer ,
where r ¼ jrj is the radial distance, er ¼ r=r is the local orthogonal
unit vector in the directions of increasing r, and qr ¼ qrðrÞ is the
radial component of the vector q. This means that we consider
the case of only rotationally covariant functions, which is analo-
gous to simplification, that is used for the NIDS integrations (see
Section 4 of [21]).

Let us consider a region WD in the fractal materials with
the boundary Sd ¼ @WD with dimensions dimðWDÞ ¼ D and
dimðSdÞ ¼ d. In general, the volume dimension D of the region
and the boundary dimension d of this region are not related by
the condition d ¼ D� 1, (dimð@WDÞ – dimðSdÞ � 1). It is conve-
nient to define the parameter ar ¼ D� d, which is a dimension of
fractal material along the radial direction er .

The gradient for the scalar field TðrÞ ¼ TðrÞ and the radial
dimension ar – 1 is defined [15] by the equation

GradD;d
r T ¼ Cðar=2Þ

par=2 rar�1

@TðrÞ
@r

er: ð1Þ

Applying integration in NIDS and the corresponding Gauss’s
theorem, the divergence is defined [15] in the form

DivD;d
r q ¼ pð1�arÞ=2 Cððdþ arÞ=2Þ

Cððdþ 1Þ=2Þ
1

rar�1

@qrðrÞ
@r

þ d
rar

qrðrÞ
� �

: ð2Þ

Using the operators (1) and (2) and q ¼ qrðrÞer , we get [15] the
scalar and vector Laplace operators by

SDD;d
r T ¼ DivD;d

r GradD;d
r T; VDD;d

r q ¼ GradD;d
r DivD;d

r q: ð3Þ
The scalar Laplacian for d – D� 1 for the field T ¼ TðrÞ is

SDD;d
r T ¼ Aðd;arÞ 1

r2ar�2

@2T
@r2

þ dþ 1� ar

r2ar�1

@T
@r

 !
; ð4Þ

where

Aðd;arÞ ¼ Cððdþ arÞ=2ÞCðar=2Þ
par�1=2Cððdþ 1Þ=2Þ : ð5Þ

The vector Laplacian for d– D� 1 for the field q ¼ vðrÞer is

VDD;d
r q ¼ Aðd;arÞ 1

r2ar�2

@2qr

@r2
þ dþ 1� ar

r2ar�1

@qr

@r
� dar

r2ar
qr

 !
er: ð6Þ

The vector differential operators (1), (2), (4) and (6) allow us to
describe fractal materials with the boundary dimensions
d– D� 1 by continuous models with NIDS.

A heat transfer in fractal materials in the framework of contin-
uous model with non-integer dimensional space is described by
the equations

cpq
@Tðr; tÞ

@t
¼ k SDD;d

r Tðr; tÞ þ qrðr; tÞ; ð7Þ

where T ¼ Tðr; tÞ is the local temperature (temperature field), k is
the thermal conductivity, cp is the isobaric heat capacity (is specific
heat capacity), q is the density of the material (qcp is considered as

a volumetric heat capacity), SDD;d
r denotes the Laplace operator (4).

Eq. (7) is the heat transfer equations for non-integer dimensional
space and it can be used to describe the heat transfer in isotropic
fractal materials.

The law of heat conduction, also known as the Fourier’s law,
describes the heat flux across a surface Sd. In the differential

formulation of Fourier’s law, the local heat flux is defined by the
gradient for the scalar field Tðr; tÞ and the radial dimension
0 < ar 6 1 by the equation

qv ¼ �kGradD;d
r Tðr; tÞ: ð8Þ

It is convenient to work in the dimensionless space variables
x=R0 ! x; y=R0 ! x; z=R0 ! x; r=R0 ! r, that yields dimensionless
integration and dimensionless differentiation in NIDS. Here R0

is the characteristic size of a fractal material, such as a
minimal scale of self-similarity of a considered fractal material.
Then the density q and the fields q;p; f have correct physical
dimensions.

The suggested generalizations of the heat transfer equation and
Fourier’s law describe thermal properties of fractal materials in the
framework of continuous models with NIDS. These equations allow
us to describe the heat transport in isotropic fractal materials, for
the spherical or cylindrical symmetries, when the fields T and qr

are not depend on the angles.

3. Heat transfer in fractal pipe

Let us consider the heat transfer equation of fractal materials
for a heat flow in fractal pipe of annular cross-section with the
internal radius R1 and external radius R2. Using the continuous
models with NIDS, we describe a steady heat flow in fractal
pipe with circular cross-section. We assume that the axis of
the pipe is the X-axis. The temperature field of fractal material
is a function of r only. Using the fractal heat transfer Eq. (7),
we have

SDD;d
r TðrÞ þ qr

cpq
¼ 0 ð9Þ

with ar ¼ D� d– 1 in general.
Using (4), Eq. (9) is written in the form

Aðdx;arÞ 1
r2ar�2

@2TðrÞ
@r2

þ dx þ 1� ar

r2ar�1

@TðrÞ
@r

 !
þ qr

cpq
¼ 0; ð10Þ

where Aðdx;arÞ is defined by (5), dx ¼ d� ax, and ax is dimension
along the X-axis. Using TðrÞ as a scalar field, we can apply equations,
where D ! Dx ¼ D� ax and d ! dx ¼ d� ax to get (10). Eq. (10)
with ar ¼ ax ¼ 1 gives

@2TðrÞ
@r2

þ d� 1
r

@T
@r

þ qr

cpq
¼ 0; ð1 < d < 2Þ; ð11Þ

where d ¼ dx þ 1 > 1 and D ¼ dþ 1 > 2.
The general solution of (10) is

TðrÞ ¼ C1rar�dx þ C2 � 1
2ðdx þ arÞarAðdx;arÞ

qr

cpq
r2ar

ð1 < D < 3; ar � dx – 0Þ: ð12Þ
For non-fractal materials (D ¼ 3), we have the solution in the
form

TðrÞ ¼ C1 lnðrÞ þ C2 � qr

4cpq
r2: ð14Þ

The constants C1 and C2 in the general solution (12) are determined
by the boundary conditions

TðR1Þ ¼ T1 TðR2Þ ¼ T2: ð15Þ
These conditions give the equations

C1R
ar�dx
1 þ C2 � 1

2ðdx þ arÞarAðdx;arÞ
qr

cpq
R2ar
1 ¼ T1; ð16Þ
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