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Nomenclature

X1, X2 co-ordinates [m]

T temperature [K]

q heat flux [W/m?]

k thermal conductivity [W/m?]

h heat transfer coefficient [W/(m? K)]

R contact resistance [m2K/W]

tol tolerance

iter number of iteration

Sj source points

Xm collocation point

X inner point

n outward normal to the boundary

Ny outward unit vector to the boundary at the collocation
point

ng outward unit vector to the boundary at the source point

N number of source points

M number of test nodes

Q¥ U¥  source intensity factors

G(sj,Xm) fundamental solution
L length [m]

SRMSE relative root mean square error
Cond condition number

m power parameter

CPU calculation time [s]

S dimensionless length, measured along the circumfer-
ence

Greek symbols

Q computational domain

r boundary

a, B, 7, & & constants

0 temperature in the Kirchhoff space

V] function of Kirchhoff transformation

u interchange factor

I Stefan-Boltzmann constant [W/(m? K*)]

Subscripts

) left

r right

f fluid

b boundary

D boundary with Dirichlet condition
N boundary with Neumann condition
R boundary with Robin condition

1 first subregions

2 second subregions

num numerical

exact exact

1. Introduction

In many industrial processes, it is necessary and justification to
assume that the material-physical properties are not constant and
depend on the temperature. In most of the semiconductor materi-
als, the effect of temperature-dependent thermal conductivity con-
tributes an additional temperature rise and should be accounted
for in thermal analysis of GaN-based electronics [1]. The assump-
tion that the thermal conductivity depends on temperature may
contribute to a better understanding in many industrial process,
for instance the hot-stamping process [2] and the sophisticated
thermal management. The ignorance of temperature-dependent
of the thermo-physical parameters assumptions violates the actual
fins operating conditions. Fins are used to increase the heat
transfer of heating systems such as, cooling electric transformers,
cooling of computer processor, IC engines, air conditioning and
refrigeration. In the heat transfer problems in high-temperature
environments or if large temperature differences exists within a
fin the assumption of the temperature dependence of the thermal
conductivity is necessary [3-10]. This assumption leads to
nonlinearity of governing equation. In the steady-state case, this
nonlinearity can be removed by employing the Kirchhoff transfor-
mation. The original nonlinear partial differential equation (PDE) is
replaced by the Laplace equation in the transformed space. The
boundary conditions of first and second kind pose no problem for
the transformation, but the third kind boundary condition and
the interface condition become nonlinear. However this nonlinear-
ity is not strong which may cause the convergence problems.

For such nonlinear heat transfer problem the approximate
results can be easily obtained by numerical methods.
One-dimensional nonlinear heat conduction problem has been
solved with some semi analytical methods, such as the perturba-
tion method (PM) [11,12], the variational iteration method (VIM)
[13], the homotopy analysis method (HAM) [14], the differential
transform method (DTM) [3-6,15,16] and the Adomian decompo-
sition method (ADM) [8,17]. Two-dimensional boundary value

problems have been the subject of several studies using the ADM
[9], the finite element method (FEM) [18-20], the boundary ele-
ment method (BEM) [21-23], the method of fundamental solutions
(MFS) [24,25], the fundamental solution-based hybrid finite ele-
ment method (HFS-FEM) [26], the hybrid Trefftz finite element
method (HT-FEM) [27] or the boundary knot method (BKM)
[28,29].In [10], homotopy perturbation sumudu transform method
(HPSTM) has been used to evaluate temperature distribution and
effectiveness of radial fins with temperature-dependent thermal
conductivity and exposed to convection.

Like the BEM, the MFS is applicable when a fundamental solu-
tion of the operator governing the PDE is explicitly known. The
MES is much easier to implement than the BEM since no surface
integrals need to be calculated. In the MFS, the solution of the
problem is approximated by a linear combination of fundamental
solutions with the singularities located outside the solution
domain on a fictitious boundary. However, the MFS has the disad-
vantage of the distribution of the source points. The singularities
may be either pre-assigned, or let free and determined as part of
the solution of the problem. In [25] in order to determine the opti-
mal positioning of fictitious-boundaries, authors use the minimiza-
tion of the maximum error in the boundary conditions.

As an alternative to the MFS, Chen and Wang proposed a novel
numerical method, called the singular boundary method (SBM)
[30]. The SBM is mathematically simple, easy-to-program, accu-
rate, meshless and integration-free and avoids the controversy of
the fictitious boundary in the MFS. Recently, the SBM has been suc-
cessfully implemented in heat conduction problems [31,32]
including anisotropic materials [33,34], acoustic problem [35,36],
elastostatic problems [37] and water wave problems [38,39] and
so on. In [33] the SBM was proposed in solving steady state heat
conduction problem in three-dimensional anisotropic materials
with the symmetric and positive-definite thermal conductivity
coefficients. In [34], authors investigated the efficiency of the
SBM for the solution of Cauchy steady-state heat conduction prob-
lems in an anisotropic medium. In both papers [33,34] the SBM is
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