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a b s t r a c t

The dual reciprocity boundary element method (DRBEM) and the precise time-domain expanding algo-
rithm are combined for solving transient heat conduction problems with heat sources. Firstly, the recur-
sive formulation of the governing equation is derived by expanding time-dependent physical quantities
at any discrete time interval. Then, the recursive equation is solved by the DRBEM, while a self-adaptive
check scheme is used for estimating recursive times in a time step. Finally, the single and
multi-connected domain problems are analyzed respectively with different kinds of boundary conditions.
The results show that the proposed method can obtain very stable and accurate results with different
time steps.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that many practical engineering problems are
closely related to the transient heat transfer process. Exploring dis-
tribution of physical quantities such as temperature and heat flux
is very important, which is closely concerned with the safety and
cost of engineering. Recently, numerical schemes have become
the most important and popular methods due to the complexity
of transient heat conduction problems. Generally, the numerical
methods [1–3] mainly include the finite difference method
(FDM), the finite element method (FEM), the finite volume method
(FVM), the meshless method and the boundary element method
(BEM). For most methods, the finite difference is often adopted
to replace the derivative of time for time-dependent problems.
Although the finite difference is simple and convenient, numerical
results fluctuate according to the change of time steps. It is an
urgent task to seek a time-domain processing method to ensure
the stability and convergence of results.

In 1999, Yang [4] presented the precise time-domain expanding
algorithm, which can not only obtain the stable and accurate
numerical results, but also check the needed number of expansion
terms by a self-adaptive technique. Up to now, the method com-
bining the precise time-domain algorithm with FEM or Meshless
method has been applied to many fields, such as heat transfer
problems [4] and viscoelastic problems [5–7].

Compared with FDM, FEM, FVM and Meshless method, BEM is a
very robust analysis method for solving the linear and homoge-
neous heat conduction problems [8–11] based on the known fun-
damental solution of problems. However, it is very difficult for
complex transient heat conduction problems to obtain the funda-
mental solution except some very special cases [12–15].
Fortunately, we can adopt the fundamental solution of the approx-
imate problem to establish the boundary integral equation,
whereas domain integrals will be involved in the resulting integral
equation. In order to keep the advantage of reducing dimensional-
ity of BEM, the domain integrals are necessary to transform into
the boundary integrals.

Many excellent transformation methods of domain integrals
have been presented by BEM researchers, such as the dual
reciprocity method (DRM) [16] and the radial integral method
(RIM) [17,18]. In general, DRM requires particular solutions which
restricts its application to complicated problems. However, when
the particular solutions of problems can be obtained through sim-
ple approximation functions, some complicated problems can be
solved perfectly. RIM is a pure mathematical treatment without
using the particular solutions of problems, whereas many radial
integrals need to be computed. Particularly, the computation of
radial integral is time-consuming for the large number of nodes.
The dual reciprocity BEM (DRBEM) and the radial integral BEM
(RIBEM) are obtained by combining DRM and RIM with BEM,
respectively. The two methods have been widely applied to many
fields including the natural convective flow of micropolar fluid
problem [19], the inverse natural magneto-convection problem
[20], the magneto-thermo-viscoelastic problem [21], the dynamic
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analysis of laminate composite plate [22], the nonlinear and non-
homogeneous elastic problem [23], the crack analysis in function-
ally graded materials [24], the viscous flow problem [25] and the
heat conduction problem [26]. But solutions are sensitive to differ-
ent time steps due to using the finite difference technique to
replace the derivative term with respect to time. In 2014, Yu
et al. [27,28] combined the precise time-domain expanding
method with RIBEM to solve the transient heat conduction
problems.

There is a history of over 30 years for DRBEM since it was pro-
posed in 1983 [16]. Even now, the method still shows strong vital-
ity [29]. The time difference method is widely used to deal with the
time-domain when using DRBEM. However, numerical results are
sensitive to different time steps, which still exists in DRBEM.

In this paper, the precise time-domain expanding and the
DRBEM (PTE-DRBEM) are combined to solve transient heat con-
duction problems. By expanding the time-dependent quantities
in discrete time intervals, the DRBEM recursive formulation is
derived with self-adaptive check technique to improve the compu-
tational accuracy. Finally, some numerical examples are shown to
validate the present method.

2. Governing equation

For the isotropic media, the governing equation of transient
heat conduction problems with constant physical parameters can
be given by

kr2Tðx; tÞ þ f ðx; tÞ ¼ qc
@Tðx; tÞ
@t

; x 2 X ð1Þ

where x ¼ ðx1; x2Þ, Laplace operator r2 ¼ @2=@ðx1Þ2 þ @2=@ðx2Þ2,
Tðx; tÞ is the temperature of point x 2 X at time t, f ðx; tÞ is the heat
source, k, q and c are thermal conductivity, density and specific
heat, respectively.

The initial condition can be expressed as

Tðx;0Þ ¼ T0ðxÞ ð2Þ

where T0 is a prescribed function. In present study, two type bound-
ary conditions will be considered including the temperature and the
heat flux. The boundary conditions can be written as

Tðx; tÞ ¼ �Tðx; tÞ x 2 C1

qðx; tÞ ¼ �qðx; tÞ x 2 C2

(
ð3Þ

where C1 [ C2 ¼ C;C1 \C2 ¼£, C ¼ @X, q is the heat flux and can
be expressed as q ¼ �k@T=@n, �T and �q are prescribed temperature
and heat flux history on the corresponding boundary, respectively.

3. Recursive governing equation in a discrete time-domain

In a discrete time interval ½tl; tlþ1�, Tðx; tÞ, qðx; tÞ and f ðx; tÞ at
time tl can be expanded in the following Taylor series forms
[4,27,28]

Tðx; tÞ ¼
X
m¼0

TðmÞðxÞsmðtÞ ð4Þ

qðx; tÞ ¼
X
m¼0

qðmÞðxÞsmðtÞ ð5Þ

f ðx; tÞ ¼
X
m¼0

f ðmÞðxÞsmðtÞ ð6Þ

where s ¼ ðt � tlÞ=Dtlþ1ðl ¼ 0;1;2; . . .Þ and Dtlþ1 ¼ tlþ1 � tl is the

(l + 1)th time step. TðmÞ, qðmÞ and f ðmÞ are the mth expansion coeffi-
cients of T , q and f respectively. They are only related to the spatial
coordinates x. The expansion coefficients from the standard Taylor
series can be obtained by

ð�ÞðmÞ ¼ ðDtlþ1Þm

m!

@mð�Þ
@tm

����
t¼tl

ð7Þ

where ð�Þ denotes the functions T , q or f . The derivative of Tðx; tÞ
with respect to t and x can be respectively expressed as

@Tðx; tÞ
@t

¼
X
m¼0

mþ 1
Dtlþ1

Tðmþ1ÞðxÞsmðtÞ ð8Þ

Nomenclature

A coefficient matrix
c specific heat
f heat source
f ðmÞ expansion coefficient of f with order m
G weight function
k thermal conductivity
Nb number of boundary nodes
NI number of internal nodes
Nt total number of nodes
q heat flux
qðmÞ expansion coefficient of q with order m
q heat flux vector
t time
T temperature
T0 initial temperature
TðmÞ expansion coefficient of T with order m
T temperature vector
x, y nodes
x1; x2 Cartesian coordinates of the node x
X unknown vector
Y known right-hand-side vector
r2 Laplace operator

q density
X domain of problem
C boundary of the domain X
Dt time step
/ðRÞ radial basis function
k � k2 vector 2-norm
e error bound

Subscripts
b boundary node
I internal node

Superscripts
m order of expansion

Abbreviations
DRBEM dual reciprocity BEM
PTE-DRBEM precise time-domain expanding and DRBEM
FD-DRBEM finite difference and DRBEM
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