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a b s t r a c t

In this work, the effect of aspect ratio (polar to equatorial axis) of a spheroid on the flow and heat transfer
in shear-thinning viscoplastic fluids characterised by the Herschel–Bulkley fluid model has been analyzed
in the forced-convection regime. The momentum and energy equations have been solved numerically in
the steady and laminar flow regime over the following ranges of conditions: Reynolds number,
1 6 Re 6 100; Prandtl number, 1 6 Pr 6 100; Bingham number, 0 6 Bn 6 10; power-law index,
0:2 6 n 6 1 and the aspect ratio of the spheroid, 0:2 6 e 6 5. In addition, limited results were also
obtained in the low Reynolds number (Re ! 0) and Peclet number regime to examine the scaling of
the Nusselt number with the Peclet number. The effect of particle shape is elucidated on the size and
location of yield surfaces, streamline and isotherm contours, wake characteristics (length and separation
angle), drag coefficient and the local and average Nusselt numbers over the foregoing ranges of condi-
tions. In general, oblate shapes (e < 1) promote heat transfer with reference to that for a sphere
(e ¼ 1) at fixed values of the Reynolds, Prandtl and Bingham numbers. The tendency for wake formation
is, however, reduced by the fluid yield stress. All else being equal, both drag and Nusselt number show a
positive dependence on the Bingham number due to the sharpening of the gradients in the thin fluid-like
regions existing adjacent to the spheroid. Further augmentation in heat transfer is achieved by
introducing shear-thinning fluid behaviour in yield-stress fluids. The paper is concluded by presenting
a correlation in terms of the Colburn-j factor as a function of the modified Reynolds number (Re�),
power-law index (n) and aspect ratio (e) thereby enabling the estimation of the Nusselt number for
intermediate values of parameters in a new application.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Most structured fluids like emulsions, foams, dispersions and
suspensions, melts, solutions and composites made of high molec-
ular weight natural and synthetic polymers and micellar solutions,
etc. exhibit a range of non-Newtonian flow characteristics which,
in turn, give rise to a range of spectacular flow phenomena [1,2]
as well as pose enormous challenges to their processing in scores
of industrial settings [3–6]. The most common and frequently
encountered non-Newtonian characteristics are the so-called
shear-thinning viscosity and fluid yield stress. From an engineering
standpoint, it is now widely acknowledged that the fluid yield
stress not only makes their flow difficult but heating of such fluids
in heat exchangers and other devices is also severely impeded
[2,7]. This trend is also borne out by some of our recent studies
on the laminar natural- and forced-convection heat transfer from

heated spheres [8,9], spheroids [10], circular and elliptical cylin-
ders [11–14] in Bingham plastic fluids. In contrast, the shear-
thinning fluid behaviour facilitates heat transfer over and above
that seen in Newtonian fluids. Indeed, it is possible to enhance
the rates of heat transfer by up to 70–80% under appropriate con-
ditions. Such augmentation in heat transfer has been demonstrated
for a sphere [15–20], and circular [21,22] and elliptical cylinders
[23,24] in the forced-, free- and aiding-buoyancy mixed convection
regimes. Of course, the degree of enhancement in heat transfer
varies from one shape to another and is strongly dependent on
the values of the shear-thinning index and the values of the
influencing parameters like Reynolds and Prandtl numbers in
the forced-convection and Grashof and Prandtl numbers in the
free-convection regime, etc. Broadly, stronger the shear-thinning
behaviour and advection, greater is the enhancement in heat trans-
fer. It thus stands to reason that the reduction in heat transfer on
account of the fluid yield stress can be partially compensated if
the fluid also exhibits shear-thinning behaviour. Indeed, most
viscoplastic fluids do exhibit varying levels of shear-thinning
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behaviour [6,25,26]. This conjecture is in line with the scant results
on forced convection heat transfer from a sphere in Herschel–Bulk-
ley model fluids [27]. The present work aims to examine this
proposition by considering forced convection heat transfer from
an isothermal spheroidal particle to Herschel–Bulkley model fluids
in the steady axisymmetric flow regime. It is, however, instructive
to tersely review the pertinent studies in Newtonian fluids avail-
able in the literature which, in turn, will facilitate the presentation
and discussion of the new results.

In contrast to the voluminous literature for a sphere [28,29] and
the continued interest in this problem [30], the analogous body of
information on spheroids is very limited even in Newtonian fluids.
Early studies of Payne and Pell [31] and Breach [32] have dealt with
the calculation of drag on axisymmetric bodies including prolates
and oblates in the creeping flow regime. Subsequently, these have
been supplemented by the numerical studies at finite Reynolds
numbers for steady and time-dependent flows [33–39] and see
the references therein. All in all, the numerical results are now
available up to Reynolds number values of �100 or so depending
upon the linear dimension used. For instance, Alassar and Badr
[37–39] have numerically investigated the steady [37] and time-
dependent (both starting from rest and pulsating) [38,39] flow of
Newtonian fluids over a spheroid, particularly to delineate the
effect of Reynolds number (0.1–1) on the flow field in the steady
flow regime. The time-dependent studies endeavour to elucidate
the effect of amplitude and frequency of pulsations on the evolu-
tion of pressure and velocity fields and drag coefficients, etc. Aside
from these numerical studies, some results have also been

obtained on forced convection heat transfer from particles of arbi-
trary and/or slender shapes under limiting conditions [40,41].
Thus, for instance, Brenner [40] considered forced convection heat
transfer from a particle of arbitrary shape in the Stokes flow regime
for small values of Peclet number. He used the standard approach
of matching the so-called inner and outer expansions for the tem-
perature fields. These results were expressed in terms of the ratio
ðNu=Nu1Þ, i.e., augmentation in heat transfer above the conduction
limit. Interestingly, this ratio was found to be independent of the
Reynolds number up to the first order in Peclet number whereas
higher order terms depended on both the Reynolds number as well
as the orientation of the particle. In a recent study [41], Schnitzer
has provided an excellent overview of the extension of this
approach in the context of advection–diffusion of heat and mass
by combining it with the slender-body approximation. He has con-
sidered the case of arbitrary tangential velocity distribution on the
surface of the slender body of revolution including the limiting
cases of irrotational and no-slip Stokes flow. Of particular interest
are his results on the forced convection heat transfer from an
isothermal slender body (aspect ratio, e?1) which are valid up
to Peclet numbers of order 1 in the Stokes flow regime. In the limit
of small Peclet numbers, his predictions are consistent with that of
Brenner [40]. Furthermore, his calculations show the error to be
logarithmically small in e. Lastly, the slender-body approach out-
lined in [41] does not seem to be limited to small values of Peclet
number as is evident from a close match between the analytical
and numerical results up to about Pe 6 7. Similarly, Dwyer and
Dandy [42] reported numerical results in the range 10 6 Re 6 66

Nomenclature

a spheroid semi-axis normal to flow (equatorial semi-
axis), m

Ap projected area of spheroid normal to flow (¼ pa2), m2

b spheroid semi-axis parallel to flow (polar semi-axis), m

Bn Bingham number ¼ s0
KðU0=2aÞn

� �
, dimensionless

CD drag coefficient ¼ 2FD
qU2

0 �Ap

� �
, dimensionless

CDF friction drag coefficient ¼ 2FDF
qU2

0 �Ap

� �
, dimensionless

CDP pressure or form drag coefficient ¼ 2FDP
qU2

0 �Ap

� �
, dimension-

less
cp specific heat of fluid, J kg�1 K�1

Cp pressure coefficient
D1 diameter of computational domain, m
e aspect ratio of spheroid ð¼ b=aÞ, dimensionless
FD total drag force, N
FDF friction component of drag force, N
FDP pressure component of drag force, N
Fs Stokes drag force for a sphere, N
j Colburn-j factor, dimensionless
k thermal conductivity of fluid, W m�1 K�1

K fluid consistency index in Herschel–Bulkley model,
Pa sn

Lr recirculation length measured from the spheroid
surface in the direction of flow, m

m regularization parameter in Papanastasiou approxima-
tion, Eq. (7), dimensionless

n power-law index, dimensionless
Np number of grid points on the surface of spheroid,

dimensionless
Nu average Nusselt number, dimensionless
Nuh local Nusselt number on the surface of spheroid,

dimensionless
Nu1 average Nusselt number in the limit of conduction,

dimensionless

P pressure, dimensionless
Pe Peclet number, dimensionless

Pr Prandtl number ¼ K cp
k

U0
2a

� �n�1
� �

, dimensionless

Pr� modified Prandtl numberð¼ Prð1þ BnÞÞ, dimensionless

Re Reynolds number ¼ ð2aÞnU2�n
0 q

K

� �
, dimensionless

Re2b Reynolds number based on the length scale of 2b,
dimensionless

Re� modified Reynolds number ¼ Re
ð1þBnÞ

� �
, dimensionless

T fluid temperature, K
T0 temperature of the fluid in the free stream, K
Tw temperature on the surface of spheroid, K
U0 free stream velocity, m s�1

V velocity vector, dimensionless
x; y Cartesian coordinates, m

Greek symbols
_c rate of deformation tensor, dimensionless
d minimum grid spacing on the surface of spheroid, m
g apparent viscosity of fluid, dimensionless
h position on the surface of spheroid, degree
hs separation angle, degree
k parameter used in Bercovier and Engelman model,

dimensionless
lHB plastic viscosity of Herschel–Bulkley fluid model

ð¼ KðU0=2aÞn�1Þ, Pa s
ly yielding viscosity in the bi-viscous model, Pa s

n fluid temperature ¼ T�T0
Tw�T0

� �
, dimensionless

q density of fluid, kg m�3

s deviatoric stress tensor, dimensionless
s0 fluid yield stress, Pa
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