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a b s t r a c t

In this paper the non axisymmetric longwave instability of a thin viscoelastic liquid film flowing down a
vertical heated cylinder is investigated. The stability of the film coating a cylinder in the absence of grav-
ity is also investigated. In a previous paper it is found that viscoelasticity stimulates the appearance of
azimuthal modes but the axial mode is the most unstable one. Other calculations in a former paper show
that for flow outside a heated cylinder azimuthal modes can be the more unstable when the Marangoni
number is large and, in particular, when the Reynolds number and wavenumber are small. Therefore, the
small wavenumber and large cylinder radius approximation is assumed with the simultaneous action of
viscoelasticity and thermocapillarity on the stability of azimuthal modes. In the presence and in the
absence of gravity, it is found that, in comparison with the Newtonian case, it is easier to excite the azi-
muthal modes when viscoelasticity and thermocapillarity destabilize at the same time. Moreover, it is
shown that, despite the axial mode is the most unstable one, there are wide wavenumber ranges where
higher modes are the more unstable and they can show up by means of a periodic time dependent
perturbation.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The coating of surfaces by liquid films have important applica-
tions in industry. The problems found when looking for the perfect
finishing are due to hydrodynamic instabilities. In the absence of
gravity a cause of instability is thermocapillarity. When the liquid
layer is coating a flat wall Pearson [1] has shown that a liquid film
is unstable to temperature gradients perpendicular to the layer. As
a consequence convection cells appear which may have important
consequences in the solidified film. Therefore, it is necessary to
investigate this instability under different mechanical and thermal
boundary conditions. When the free surface is deformable the
problem is investigated first by Scriven and Sternling [2]. The
restoring influence of gravity is taken into account by Takashima
[3] in the stationary case and by Takashima [4] when the flow is
time dependent. The double diffusive Marangoni convection is first
investigated by Mctaggart [5]. Sometimes in applications the fluid
has elastic properties due to the presence in solution of macro-
molecules which change their form when shear stresses are
applied to the liquid. These fluids are called viscoelastic (see for

example Bird et al. [6]) and have been investigated widely in nat-
ural convection phenomena (see a recent review paper by
Dávalos-Orozco [7–9] by Pérez-Reyes and Dávalos-Orozco).
Notice that one characteristic of the viscoelastic instabilities is that
they can be time dependent, in contrast to Newtonian fluids con-
vection. Yet it is shown [8] that these instabilities do not occur
for any thermal boundary conditions.

The thermal Marangoni instability has also been investigated
for viscoelastic fluids by a number of authors. Getachew and
Rosenblat [10] calculated the codimension-two points where sta-
tionary and oscillatory convection compete to be the first unstable
one when the Marangoni number increases. Wilson [11] investi-
gates supercritical conditions of the thermocapillary instability of
a viscoelastic fluid from the point of view of the growth rates.
Siddheshwar et al. [12] investigate the instability of a Maxwell
fluid under different thermal boundary conditions including the
effect of viscosity variation with temperature. The thermocapillary
instability of a Maxwell viscoelastic fluid is investigated by Herná
ndez-Hernández and Dávalos-Orozco [13] assuming a flat free sur-
face and presenting results for a wide range of wall thermal con-
ductivities. The goal is to calculate the codimension-two points
where the stationary and oscillatory Marangoni convection modes
compete to be the first unstable one.
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When a fluid layer flows down a wall, the thermocapillary effects
are included by Joo et al. [16,14] and Ramaswamy et al. [15]. A
complete review of this problem is found in Dávalos-orozco [17].

Nonlinear computations of the instability of a thin viscoelastic
film falling down an inclined wall are done by Joo [18]. Kang and
Chen [19] find in the linear limit a purely elastic instability. This
flow is investigated by Dávalos-Orozco [20] when the wall is
smoothly deformed. It is shown that it is still possible to stabilize
the flow by means of spatial resonance as done by
Dávalos-Orozco [21] when the fluid is Newtonian.

It is of interest to know if the azimuthal modes are relevant in a
cylindrical wall. Shlang and Sivashinsky [22] found that the azi-
muthal modes can not be the most unstable in a Newtonian fluid
and that the axial one is always the most unstable one. For flow
inside the cylinder the axial mode grows faster as in microchannels
when the liquid forms an annular film [23,24]. Therefore, for any
radius, the axial mode is the most unstable one inside the cylinder.
When a film is flowing down the outside of a rotating cylinder, it
has been shown [25–27] that the first azimuthal mode may be
the most unstable one under different circumstances.
Nevertheless, for flow inside the cylinder (as in [28]) the most
unstable mode is the axial one. The relevance of the azimuthal
modes is also found in the instability of inviscid stratified fluids
in a rotating annulus [29].

The thermocapillary phenomena of a film flowing down a verti-
cal cylinder present interesting results. This free surface condition
is of concern in practical applications of heat dissipation [30].
Linear stability calculations of a thin film flowing down a cylindri-
cal heated wall (see Dávalos-Orozco and You [31]) have demon-
strated that high azimuthal modes can be the more unstable
ones when the Reynolds number and the wavenumber of the per-
turbation are small. To excite these modes large magnitudes of the
temperature gradient are required. It is important to point out that
in the presence of thermocapillarity, the azimuthal modes can also
be excited as the more unstable ones when the flow is inside the
cylinder.

The two dimensional flow instability of non-Newtonian thin
films flowing down a cylinder has also been investigated by
Cheng and Liu [32–34] for a power-law fluid, by Cheng et al. [35]
and Cheng and Lai [36] for a viscoelastic Walters B fluid (with
application to magnetohydrodynamics). In Moctezuma-Sánchez
and Dávalos-Orozco [37] the viscoelastic Oldroyd’s constitutive
equation model was used to investigate the longwave linear insta-
bility of a fluid film flowing down a cylinder. The corresponding
linear equation reduces to that obtained by Joo [18] (without
power-law fluid effects) when the radius of the cylinder tends to
infinity. In particular, the interest in [37] is to determine the rele-
vance of the azimuthal modes in the presence of viscoelasticity. It
is found that the most unstable mode is always the axial one.
Eventhough, viscoelasticity promotes the appearance of the azi-
muthal modes in comparison with the Newtonian fluid, they are
not the more unstable ones in any range of the wavenumber.

In the present paper, the interest is focused on the thermocap-
illary excitation of azimuthal modes in a viscoelastic fluid. A com-
parison is done with the results of the isothermal [37] flow and the
Newtonian fluid [31] flow. The Oldroyd’s fluid model is selected for
the constitutive equation of the fluid. The linear evolution equation
calculated below, reduces to that of Joo [18] when the radius of the
cylinder tends to infinity and in the absence of thermocapillary
effects. In the lack of thermocapillary effects the equation reduces
to that in [37]. The results of this paper are new not only because of
the combination of viscoelasticity [37] and thermocapillarity [31]
in flow on the surface of a cylinder, but also because the problem
investigated is three dimensional. This can be seen in the review
section on thin film flow down cylinders presented in
Dávalos-orozco [17]. It is found that in the linear and non linear
problems, mainly axial mode stability is investigated. For three
dimensional flows see [22,25–27,29]. The physical reason for the
appearance of azimuthal modes of instability are the azimuthal
shear stresses created by thermocapillarity, as will be seen pre-
sently in the discussion of the first and second tangential shear
stresses of the free surface boundary conditions.

Nomenclature

Bi free surface-atmosphere Biot number
c phase velocity
Cr crispation number
De Deborah number
e shear rate tensor
g acceleration of gravity
h free surface deformation
h0 mean thickness of the layer
Hh heat transfer coefficient
H free surface perturbation amplitude
k axial wavenumber
kC critical wavenumber
kf fluid thermal conductivity
L1 adimensional relaxation time
L2 adimensional retardation time
m azimuthal number
Ma Marangoni number
n! normal vector
P pressure
pi : i-th order perturbation pressure
Pr Prandtl number
R cylinder radius
Re reynolds number
S surface tension number

S scaled surface tension number
T temperature
Tamb ambient temperature
Ti : i-th order perturbation temperature
TW wall temperature
U representative velocity
V
!

velocity vector
We Weber number

Greek
a fluid thermal diffusivity
b non dimensional cylinder radius
c surface tension
d scaled non dimensional cylinder radius
DT temperature difference
q fluid density
m kinematic viscosity
r growth rate
s shear stress tensor
s1
�! first tangential vector
s2
�! second tangential vector
x frequency of oscillation
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