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a b s t r a c t

A numerical model of heat conduction in vacuum through contact between two rough bodies made of
commercial-purity AD1 aluminium is developed. To this end, the elastic–plastic contact deformation
problem is solved accounting strain hardening. A method for consideration of surface initial cold work
hardening and indentation size effect (ISE) is provided. Plastic characteristics of surface micro-volumes
of material were taken from indentation results. Numerical realisation of the model in ANSYS finite ele-
ment software is considered. Fractal surface models of two levels of roughness were used. Introduction of
the second level roughness (microroughness) to the model was found to have considerable effect on the
real contact area only when ISE is taken into account. An attempt to compare simulation results with data
obtained with Shlykov’s semi-empirical model was made.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

With constantly raising precision in mechanical engineering,
instrument engineering and electronics, thermal calculation of
compound structures is an essential problem. For instance, errors
due to thermal expansion are the ones most frequently ignored
and difficult to understand in the field of mechanical engineering
[1]. Temperature field of compound structures made of materials
with high thermal conductivity heavily relies on thermal contact
conductance. Thermal contact conductance estimation has always
been one of the most difficult areas in the field of heat transfer [2].

Thermal contact conductance has been studied for more than
100 years, starting from the early studies [3–5]. No reliable method
for contact heat transfer parameters prediction has been proposed
so far. Experiments can provide only limited and insufficient infor-
mation [6].

Shlykov’s empirical model [7] which was developed as a gener-
alisation of experimental data gathered before the 1970’s for a
wide range of materials, roughness parameters of contacting bod-
ies and pressures is of particular interest in this respect. According
to Shlykov, thermal contact conductance can be calculated with
the following formula:

a ¼ 8000�k
P

CrU
K

� �0:86

ð1Þ

here �k ¼ 2k1k2
k1þk2

, C = 3, coefficient K is determined by the following for-

mulae: K = 1, when Ra1 + Ra2 P 30 lm, K ¼ 30
Ra1þRa2

� �1=3
, when

10 lm < Ra1 + Ra2 < 30 lm, K ¼ 15
Ra1þRa2

, when Ra1 + Ra2 6 10 lm.

Model assumptions and drawbacks:

– Factor 8000 is derived on the assumption, introduced for the
first time in [8], that the contact spot mean radius is 30 lm
and that the real contact area is proportional to the number of
such contact spots. Based on the bulk of experimental data
gathered in 40–70’s of the last century, this assumption allowed
to a certain extent to link data on thermal contact conductance
with compression force.

– Ultimate strength rU is used instead of yield strength rY of the
maximally cold work hardened material. However, paper [9] dis-
closes that the hardened surface layer has a different and signif-
icantly higher stress–strain curve than that of the bulk material.

– CrU represents contact pressure or hardness. The idea to calcu-
late real contact area by division of normal force acting on the
surface by material Brinell hardness was suggested in [10],
and is based on the assumption from [11] of replacement of
the contact pressure by the hardness detected by indentation.
The hardness is considered to be linked to the yield strength
by the equation H = 2.8rY. Value 2.8 for coefficient C was

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.06.024
0017-9310/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +7 9851433454.
E-mail addresses: murashov@bmstu.ru (M.V. Murashov), panin@bmstu.ru (S.D.

Panin).

International Journal of Heat and Mass Transfer 90 (2015) 72–80

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2015.06.024&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.06.024
mailto:murashov@bmstu.ru
mailto:panin@bmstu.ru
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.06.024
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


obtained by Tabor [12] for contact of spherical indenter with
plane and based on the slip line field theory for the plane stress
condition and ideally plastic behaviour of material. Before that,
in [13] a value 2.84 was derived for the mean contact pressure
to yield strength ratio. Value C = 3 in formula (1) was derived
theoretically for an ideally plastic material [14]. For real mate-
rials this is often not true, and coefficient C can reach value
up to 5 and more [15,16]. For a sinusoidal elastic-perfectly plas-
tic fully closed (tight) contact [17] possible value for the coeffi-
cient calculated by finite element method reached up to 15.

Jackson and Green [18,19] showed that hardness or mean con-
tact pressure, even at perfectly plastic contact, is not independent
from the method of its obtaining and changes during deformation
of the spherical asperity. It was confirmed experimentally in [20].
Song and Komvopoulos [21] demonstrated that mean contact pres-
sure also continue to change after transition into fully plastic
deformation regime.

Despite serious disadvantages of the model, the above-
mentioned coefficients C, K, 0.86 and 8000 allowed to approximate
the experimental data available at that time with an error of less
than 20% [7]. Similar to (1) correlation models were proposed by
other experimenters [22–27], but did not allow to clarify signifi-
cantly the nature of the processes in the contact region.

From the end of the 19th century, it has been known [28] that
rough surfaces do not mate ideally to each other, but contact by
their peaks with air gap leaving between the surfaces. Thermal
conductivity of air is much lower then that of the solid, so heat
transfer is proportional not to the nominal, but to the real area of
contact, i.e. to the area of direct contact of the hills. The experi-
ments showed indirectly that the real contact area is in turn pro-
portional to the contact compression force defining degree of
mutual approach for the compressed surfaces. From the beginning
of the 1930’s, Holm [29] showed firm understanding of the fact
that the real contact area of rough surfaces is only a small part

(usually less than 1%) of the nominal area defined by geometry
of the contacting bodies.

For prediction of thermal state, roughness structure of the con-
tacting surfaces and features of heat transfer in the micron-size con-
tact regions must be taken into consideration. Thus, there is a need
for modelling of individual roughness element (hill) deformation.

In the 1960’s with the advent of computers, attempts were
made to calculate two-dimensional models of representative areas
of rough surfaces with profiles derived either by 2D-profilometer
or by stochastic modelling [30]. Due to lack of computational
power of computers of that time even for such calculations in
[30] proposed method of replacing the elastic contact of two rough
surfaces by the contact of an equivalent rough surface with a rigid
plane. In that case, the rough surface had an equivalent elastic
modulus. Possible lateral interaction of the contacting hills is
neglected, which is typical of the most of the discrete contact mod-
els described in the literature [31]. Attempts to include some inter-
action of asperities in statistical models [32–37] do not consider
the plastic deformation of the bulk material and large deforma-
tions [38].

A fractal approach for surface modelling came into practise
from the beginning of the 1990’s [39,40].

In case of elastic deformation, the thermal contact conductance
can be determined from the normal contact stiffness [41].

Multiasperity three-dimensional contact problems were solved
for elastic [42–47], elastic and elastic-perfectly plastic [48–50],
bilinear [38,51,52] and nonlinear [53] elastic–plastic material
behaviour. In [54] asperity deformations were calculated from
the creep constitutive relations. All these problems were solved
assuming the contact of a rough surface with a rigid plane.

In the 21st century, two-dimensional roughness models (for
multiasperity contact) are still in use [55–58]. Models of
three-dimensional contact of two rough surfaces appeared within
only last decade [59–61], i.e. those without the rigid plane
assumption.

Nomenclature

P pressure (Pa)
C, K coefficients
B material constant (Pa)
B⁄ constant B, modified to count for indentation size effect

(Pa lm1/2)
B⁄⁄ constant B⁄, related to the roughness element properties

(Pa lm1/2)
l, d characteristic size (lm)
lmax, dmax maximum penetration depth values of l and d, respec-

tively (lm)
H hardness (Pa)
E modulus of elasticity (Pa)
L sample length (m)
G fractal roughness (m)
D fractal dimension (m)
Ls cut-off length (m)
M number of superposed ridges
nmax upper limit of frequency index
q thermal flow density (W/m2)
Rz, Ra standardized roughness parameters (lm)
T averaged temperature of smooth surface under convec-

tion heating (K)
Tg, Tw gas and wall temperatures (K)
uz displacement of the upper surface of the body N (m)
n strain-hardening exponent
TCC thermal boundary conductance at nanoscale set in

ANSYS between contact finite elements (W/m2 K)

R, Rm, RNO thermal resistances of the contact, of the model, of the
contacting bodies N and O, respectively, (m2 K/W)

h heat-transfer coefficient (W/m2 K)
x,y,z coordinates

Greek letters
a thermal contact conductance (W/m2 K)
�k effective thermal conductivity of the contacting bodies

(W/m K)
rU, rY ultimate strength and yield strength (Pa)
k thermal conductivity (W/m K)
d nominal height of the bodies (m)
l Poisson’s ratio
k⁄ thermal conductivity in case of equal materials (W/m K)
c scale factor
/ random phase
ep plastic strain

Subscripts
1 related to the upper body N
2 related to the lower body O

Lower indexes
n frequency index
m superposed ridge index
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