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a b s t r a c t

In this article, we propose a systematic numerical solution method for deriving the homogenized material
parameters in the case where a large contrast in the phase thermal properties leads to a macroscopic
memory effect. Focus is therefore set on the determination of this memory effect for a periodic
microstructure. As for other and more classical homogenized parameters, the possibility of analyzing
with the finite element method a single periodic cell is used, and a transient simulation allows to provide
the incremental evolution of the memory effect function. Additionally, some approximations are
proposed for a low cost estimate of this function, and validated on two examples.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Models with memory effects (or heredity models) have been
used quite extensively in structural mechanics for viscoelasticity
behaviors. Especially when the structures are subjected to forced
vibration loading, their response may be easily found, analytically
in simple cases, or numerically. For transient responses, concurrent
models, mainly with internal variables have proved their ability to
be used numerically [1].

Several justifications can be stated for the physical meaning of
memory effects, one being the presence of a microstructure in the
material, leading to a delayed response at the macroscopic scale,
therefore related to upscaling [2] and a kind of time non-locality.
This is for instance the case for scattering of elastic waves for hyper-
bolic problems [3], for composite materials where the constituents
themselves exhibit a memory effect [4], or for particular non-linear
behaviors or time-dependent material properties [5].

In this article we focus on the case of evolution (elliptic)
problems, even with linear constituents, but where the contrast
of constitutive properties is large. The delayed effect is therefore

directly provided by the homogenization procedure [6–9]. We
proposed to study a thermal problem for illustration purpose,
though the same framework also applies to different physics [10].

The aim is to be able to compute numerically the memory effect
function as a macroscopic material characteristic from simulations
on the microstructure (i.e. a periodic cell), as it is classically done
for the homogenized other parameters, such as the thermal
capacity and the thermal conductivity.

In this article, Section 2 states the reference problem, Section 3
recalls the results of the periodic homogenization method for the
kind of problem that is under concern. Section 4 proposes a numer-
ical procedure for the memory effect function determination.
Finally, Section 5 provides two numerical examples: (i) a 1D
problem with an analytical solution, allowing to test the numerical
procedure, and whose study provides approximations for
determining the memory function at small and large times; (ii) a
3D problem for testing the discretization choices and for validation
of the previous approximations.

2. Reference problem and notations

We are concerned herein in an heterogeneous solid media sub-
jected to a transient thermal loading. For sake of simplicity, linear
conduction is assumed, and the media is composed of two phases,
denoted with S and F with different thermal properties, and occu-
pying two complementary domains xS and xF . The interface c
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between these two phases is assumed to be perfect, ensuring con-
tinuity of temperature and thermal flux. The reference problem
consists in finding the temperature field hðX; tÞ, where X denotes
the position within the studied domain x ¼ xS [xF , and t the
time. This temperature field, once restricted to each phase is
denoted with hS and hF . Apart from the external boundary
conditions, the problem at the microscopic scale over the whole
structure reads:

�r � qS ¼ cS
@hS

@t
on xS with qS ¼ �kSZS and ZS ¼ rhS

�r � qF ¼ cF
@hF

@t
on xF with qF ¼ �kF ZF and ZF ¼ rhF

hS ¼ hF and qS � nS þ qF � nF ¼ 0 on c

qi (i ¼ S; F) are the thermal fluxes, ki the thermal conductivities, ci

the thermal capacities, and nS ¼ �nF is the outward normal to xS

at an interface point. The microstructure is also assumed to be peri-
odic, i.e. the complete material can be reconstructed by periodic
duplication of period l in each space dimension of a basic cell whose
characteristic size is l. If L is a characteristic size of the whole struc-
ture, the scaling parameter is e ¼ l=L; it is expected to be small, tra-
ducing the assumption that the scales are separated.

3. Asymptotic expansion and periodic homogenization

This homogenization technique is based on the spatial descrip-
tion of the various fields at two scales, i.e. with two coordinate sys-
tems: one is the slow coordinates x at the scale of the whole
structure (typically x 2 ½0; L�), the other one is the fast coordinate
y, related to the scaled microstructure cell X (typically
y 2 ½0; l=e�). This scaled basic cell is therefore also composed of
the two phases S and F occupying the domains XF and XS;
C ¼ @XS \ @XF is the interface. The spatial derivative then reads
r ¼ @

@X ¼ @
@xþ 1

e
@
@y. In the following, we will use the notation rx

and ry to denote the corresponding two gradient operators.
The temperature field ðhÞ is expanded with respect to the

(small) parameter e:

h ¼
X1
a¼0

eahaðx; y; tÞ

where all the temperature fields haðx; y; tÞ are X-periodic for the
variable y.

Equating all the problem equations for the different powers of e
allows to successively provide the models for the different temper-
ature fields [11,12].

The large contrast in material characteristics arises when the
ratio between the thermal capacities or the thermal conductivities
is of the order of en with n – 0. A special case arises when the ratios
between thermal conductivities is of order e2 while the capacities
are of the same order, i.e. qFcF � qScS and the scaled conductivity
of the F-phase is k0F :¼ kF=e2 � kS. In such a case, the emergent
macroscopic thermal problem is of a different kind [7]. This
case is usefully interpreted with characteristic times [9,13]
since the characteristic macroscopic time is expected to be

sM ¼ ðCM=kMÞðL=pÞ2 (if CM and kM are the homogenized total ther-
mal capacity and conductivity), while their counterparts for the

microscopic S and F phases are sS ¼ ðqScS=kSÞðlS=pÞ2 and

sF ¼
qFcF l2

F

kFp2 �
qF cFL2

F

k0Fp2
� sS=e2 � sM

since the characteristic lengths associated to each phase are
lS � lF � l and LS ¼ lS=� � LF ¼ lF=� � L. Therefore, the transient
phenomena at the micro scale for the F-phase may well arise at
macro scale.

Details on the successive derivations of the micro and macro
problems can be found in [7], and the main results are recalled
in the following.

3.1. Macroscopic property of hS0

The first result for the S-phase is that the temperature at order
0, i.e. multiplied by e0, does not depend on the fast variable:

hS0 ¼ hS0ðx; tÞ

it is therefore a macroscopic temperature field, and its gradient
with respect to the fast variable y is null. Its gradient with respect
to the slow variable x is a macroscopic temperature gradient

ZS0ðx; tÞ ¼ rxhS0

3.2. Localization property of hS1

The next order equations give the problem that hS1 should
satisfy:

ry � qS0 ¼ 0 with qS0 ¼ �kSðZS0 þryhS1Þ in XS

qS0 � nS ¼ 0 on C

hS1 is X-periodic

It is a steady-state thermal problem whose variational formula-
tion isZ

XS

ryh
H � kSryhS1dX ¼ �

Z
XS

ryh
H � kSZS0dX ð1Þ

for all X-periodic test functions hHðyÞ. It is usually discretized with
finite elements, and its solution is linear with respect to the macro-
scopic loading ZS0. Therefore this solution, and its gradient
ZS1 ¼ ryhS1 can be expressed using a linear operator which is a
characteristic of the S-microstructure. For instance,

ZS1ðx; y; tÞ ¼ �LSðyÞZS0ðx; tÞ

The numerical determination of LS requires: (i) as many
resolutions of the previous linear micro problem (1) on XS as
there are independent components in ZS0, i.e. 2 for 2D problems,
and 3 for 3D problems, and (ii) the storage of the same
number of temperature gradient fields on XS (the columns of the
matrix LS).

This operator is a localization operator for the temperature gra-
dient. Indeed, it allows to recover the first two terms of the full
temperature gradient, obtained from the asymptotic expansion of
hS, once the macroscopic gradient is known:

ZS � ZS0ðx; tÞ þ ZS1ðx; y; tÞ ¼ ð1� LSÞZS0

and of the thermal flux

qS ¼ �kSZS � qS0 ¼ �kSð1� LSÞZS0

3.3. Problem to solve for hF0

The zero-order terms for the F-phase provide the following
problem:

qFcF
_hF0 ¼ �ry � qF1 with qF1 ¼ �k0FryhF0 in XF

hF0 ¼ hS0 on C

hF0 is X-periodic

This problem couples the micro and the macro scales due to the
fact that hF0 still depends on the y coordinate, and due to the pres-
ence of the hS0ðx; tÞ term as a boundary condition on C. On the
F-cell, this term is uniform due to the scale separation. A change
in variable may be useful: if we denote
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