International Journal of Heat and Mass Transfer 93 (2016) 1059-1071

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier.com/locate/ijhmt

Study of aerosol behaviour in filmwise condensation processes with the presence of inert gas

HEAT and M

F.J. Fernández^{*,1}, M.M. Prieto¹

Department of Energy, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain

ARTICLE INFO

Article history: Received 17 June 2015 Received in revised form 2 September 2015 Accepted 12 October 2015

Keywords: Aerosol model Heat exchangers Film condensation Fog condensation Droplet growth

ABSTRACT

The appearance of aerosols in condensation processes may result in a loss of condensate mass, a reduction of efficiency, pollution and damage to equipment. The presence of inert gases in condensation is frequent and can lead to the formation of aerosol particles. Equipment used in industrial condensation, gas cleaning, the removal of pollutants or the recovery of valuable substances comprise some examples of interest. The complexity of the physical phenomena occurring simultaneously makes the study of these systems difficult and it is thought that modelling might help to better understand their behaviour. A model has been developed in this study that includes the condensation of the gaseous mixture and phenomena related to the presence of liquid particles. The model solves the conservative equations for species continuity, energy and the number of liquid particles. It also includes the precipitation of liquid particles via thermophoresis, diffusiophoresis and gravitational deposition, homogeneous nucleation and coagulation induced by the Brownian movement of the particles. A condenser presenting a simple shelland-tube geometry was selected and subjected to a unidimensional spatial discretization. The particle size interval of the aerosol population was discretized following a sectional method of moving intervals. The interaction between continuous and discrete phases was calculated as condensational growth in non-dilute and non-ideal media. Some cases were solved for water liquid particles and vapour mixed with air and a comparison was carried out using experimental data from a previous study from the literature providing a good fit. It was observed that the condensation rate is not radically altered by the presence of particles, although the persistence of remaining growing droplets dispersed in the gas could produce the aforementioned undesirable effects.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Filmwise condensation occurs when vapour condenses on a continuous liquid film formed around a cooled surface. It is the most important mode of condensation in conventional equipment. The presence of non-condensing species mixed with the vapour is usual. This can be a result of undesired gas inlets, or because the species is part of the process. The concentration of the inert species is higher next to the liquid film, which acts as a barrier for vapour condensation. The condensing species must diffuse through the inert species towards the liquid film. At the same time, the heat also diffuses towards the cooled surface. The combination of diffusive heat and mass transfer can lead to metastable states of supersaturation in the gas. Bulk condensation can thus occur and a discrete phase may appear in the form of liquid particles dispersed in the gas mixture. The combination of the continuous and the discrete phases forms a liquid aerosol, also called fog.

Fog formation has recently been observed in experimental processes involved in the recovery of fatty acid fractions by condensation in the presence of nitrogen as the inert gas [1]. This phenomenon was thought to be the cause of some mass imbalances in the condenser. The need thus arose to develop a tool capable of calculating heat and mass transfer in condensers in which an inert gas and a discrete liquid phase are present.

Aerosols may be present in commonplace industrial equipment like burners, nozzles, turbines, heat recovery boilers and condensers [2–5]. The phenomenon has been studied in industrial processes such as absorption, scrubbing and gas cleaning [6–8]. The cleaning of gases containing hazardous or pollutant particles is of interest in the field of nanotechnology, biotechnology and drug administration, among others. Aerosols may also form in containment condensers for the nuclear industry [9–11]. Systems with a phase change including a gaseous mixture of vapour and

^{*} Corresponding author.

E-mail addresses: javierfernandez@uniovi.es (F.J. Fernández), manuelap@uniovi.es (M.M. Prieto).

¹ Group associated with the Spanish Scientific Research Council (CSIC).

Nomenclature			
A _{CS}	cross section surface area	ū	unitary direction vector
C _c	slip correction factor	V	volume
Cp	specific heat capacity at constant <i>p</i>	VP	particle volume concentration
\overline{c}_p	mean thermal velocity of the particle	v	velocity
Ď	diameter	у	gas phase mole fraction
D_B	Brownian diffusion coefficient		
D_g	binary diffusion coefficient	Greek symbols	
D_p^*	critical diameter of the particle	β _{ii}	coagulation kernel
\overline{D}_{pg}	median diameter in number concentration	$\Delta H_{f\sigma}$	specific latent heat of condensation
\overline{D}_{pV}	mean diameter in volume concentration	η	relative rate of deposition
$f_{i,j,k}$	coagulation partition coefficient	λ	mean free path
g	gravitational acceleration	μ	dynamic viscosity
G_B	geometrical factor for size bin definition	ρ	density
Н	condensation rate	σ_{σ}	geometric standard deviation
h	specific enthalpy	σ_{la}	liquid-gas surface tension
h _c	convective heat transfer coefficient	ŽNuss	correction factor for Nusselt expression
h_m	convective mass transfer coefficient	\$14055	r r r r r r r r r r r r r r r r r r r
h _{Nuss}	filmwise cond. heat transfer coefficient	Subscripts	
J	nucleation rate	0	condenser inlet
j	mass flux	0 aer	aerosol
Kn	Knudsen number	h	bulk
k	thermal conductivity	con	coagulation
k_B	Boltzmann constant	cond	condensate
L	length	dif	diffusive
т	mass	dnh	diffusionhoresis
'n	mass flow rate	σ	gas mixture
Μ	molecular mass	5 ord	gravitational deposition
Ν	number concentration	j i k	hin counter
Ň	change in number concentration with time	i, j, k ii	slab counter
N_B	number of size bins	in	inert gas
п	particle size distribution function	inlet or	<i>itlet</i> slab inlet and outlet
n_V	particle volume distribution function	int ext	tube inner and outer surfaces
Þ	particle flow rate	I I	liquid in the condensate film
Pr	Prandtl number	Ĩ	liquid
p	pressure	r m	molecule
Q	heat transfer rate	ncl	nucleation
q	heat flux	out	condenser outlet
R_U	ideal gas universal constant	n	narticle
S	saturation ratio	P S	liquid–gas internhase at the condensate
S_h	volumetric heat source term	ref	refrigerant
Sm	volumetric mass source term	sat	saturation
S_{Np}	volumetric particle number source term	t sui	tube
Sc	Schmidt number	tnh	thermonhoresis
Т	temperature	1)	vapour
t	time	ν	

x, r axial and radial directions

inert gas plus liquid particles can be found in studies on laminar flow condensers for controlled aerosol generation [12,13] and condensation nuclei counters used in atmospheric science [14–16].

The present study describes a unidimensional model developed to simulate the behaviour of aerosols in a double tube parallel flow condenser. The gaseous mixture of condensing vapour and inert gas containing a discrete phase formed by a population of liquid particles with a size distribution circulates around the inner cooled tube. Film condensation occurs on the outer surface of the tube, which is cooled by a cold water stream.

The interaction between the continuous and discrete phases constitutes an essential part of the analysis and has been the subject of a previous study [17]. The cited study describes the calculation scheme for the condensational growth of the droplets by means of a numerical method based on the finite volume method, designed for non-dilute and non-ideal media. Stefan-flow, thermal

diffusion and the Duffour effect around the droplet were included in the calculation of the droplet condensational growth.

film

Besides condensational growth, the study of the aerosol includes homogeneous nucleation of new droplets, coagulation of particles by Brownian motion, and precipitation of particles by thermophoresis, diffusiophoresis and gravitational deposition.

The physical processes involved in fog condensation are described in this paper. The solved equations and the strategies for solving them are also presented, together with a description of the numerical model. The results of a set of solved cases are analysed in order to better understand the behaviour of these complex systems. Experimental data taken from the study by Manthey and Schaber [18] is then used to compare the results of the model with a real case. The main objectives are to obtain information on the relative importance of the different phenomena occurring simultaneously and to determine the influence of the presence of aerosol liquid particles on the process of condensation. Download English Version:

https://daneshyari.com/en/article/7056337

Download Persian Version:

https://daneshyari.com/article/7056337

Daneshyari.com