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a b s t r a c t

In this study we derive an equation for the calculation of the local mass transfer rates generated by a
first-order chemical reaction on a plane wall. The validity of the expression is discussed and analyzed.
It can be used to determine the kinetic constant of the surface reaction, with the knowledge of the wall
mass flux, or to predict the local mass transfer rate knowing the kinetic constant, using parallel-plate
(bio-)microreactors. The application of the derived equation is illustrated in the prediction of the platelet
deposition in a blood perfusion chamber. The computed local surface coverage by the platelets agrees
well with the corresponding measurements found in the literature. Consequently, the equation can be
used to determine the kinetic constant in perfusion experiments carried out with different drug strategies
oriented to the prevention of myocardial infarction and stroke.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many chemical and biochemical transformations occur on the
surface of a solid wall. Examples are found in reactors and bioreac-
tors where catalyzers or enzymes are immobilized on a solid sup-
port. Some of these (bio-)chemical reactions are carried out in
miniaturized reactors, which have a high surface-to-volume ratio.
These microreactors, typically on-chip microchannel reactors,
allow an efficient use of small amounts of reactants or catalyzers
and a more precise control of the flow and the heat and mass trans-
fer processes than large scale reactors. They are used in analytical
and environmental applications [1], for catalyst optimization and
selection [2], in micro fuel cells [3], and, among others, for synthe-
sis and production in the pharmaceutical industry [4]. The field is
vast and extensive reviews are available in the literature. See for
example [5,6].

In this study we focus on the utilization of laminar
straight-microchannel-based reactors for the determination of
the effects of different operating conditions on the production rates
or in the determination of the kinetic constant of a first order

chemical or biochemical transformation. These microreactors have
the advantage of operating under very well controlled and defined
flow conditions, which allow the construction of simple models to
accurately predict production rates, with the knowledge of the
kinetic, or to determine the kinetics, with the knowledge of
the production rates. Particularly in this study, we derive a simple
equation to compute the local mass transfer rates on a plane sur-
face generated by a first-order surface chemical reaction. The equa-
tion, which is obtained from that proposed in [7] to compute the
surface averaged mass transfer rate, is applied here for the predic-
tion of the local rates of deposition of platelets in parallel-plate
perfusion chambers. In these devices, blood, under controlled con-
ditions, is pumped (mechanically or using the donor’s heart) to
flow over a biological or synthetic substrate. The measurement of
the number of platelets deposited under certain conditions (flow,
type of substrate and perfusing blood composition and/or treat-
ment) has some important implications, for example, in thrombus
formation on artificial organs, the durability of vascular prosthesis
or in the fundamental studies of hemostasis, thrombosis and
the development of atherosclerosis. Sakariassen et al. [8] reviews
the different types of perfusion chambers reported in the literature
and their use for studies on thrombosis and on different drug
strategies oriented to the prevention thromboembolytic diseases,
such as myocardial infarction and stroke.
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2. Physical and mathematical model

Fig. 1 shows the two-dimensional physical model and the coor-
dinate system adopted. It is assumed that the flow is steady, lam-
inar and fully developed and the fluid has constant physical
properties. The concentration of the reactant outside the mass
boundary layer is uniform and steady. The velocity profile within
the mass transfer boundary layer generated by the active portion
of the plane wall, where the first-order chemical reaction occurs,
is assumed to be linear (i.e. constant shear rate). This assumption
is valid if the mass transfer boundary layer thickness is much smal-
ler than the radius or the channel-half width (h) of the channel (i.e.
high Schmidt number). Pallares and Ferré [9] reported that the
adoption of this hypothesis produces errors in the mass transfer
coefficients of less than 1% if h > 10(DL/S)1/3 (see for example
Fig. 4 in [9]).

The simplified mass transfer governing equation can be written
as,
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The boundary conditions are: at x = 0 and y P 0; C ¼ Co and
oC/ox = 0, at y = 0 and 0 < x < L; kC = D oC/ox and at y ?1 and
x > 0; C = Co.

Analytical solutions to Eq. (1), together with the boundary con-
ditions, were reported by Apelblat neglecting the axial diffusion
term in the mass transport equation [10] and considering the axial
diffusion [11]. The corresponding local Sherwood numbers are,
respectively,
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Pallares and Grau [7] proposed a simple equation (Eq. (4)) to
compute the surface averaged Sherwood number as a function of
the Damkhöler number (Da) and the surface averaged Sherwood

number corresponding to an infinitely fast surface reaction (ShC).
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In Eq. (4), x⁄ is the non-dimensional axial coordinate that is
defined as x⁄ = x/L.

For an infinitely fast surface reaction the local and the surface
averaged Sherwood numbers are, according to the Lévêque’s solu-
tion [12],
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and
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respectively.
The ranges of applicability of Eq. (4) are analyzed in [7].

Differences with respect to the exact expression considering the
axial diffusion are less than 5% for Pe > 105, independently of the
Damkhöler number (see Fig. 2 in [7] to evaluate the error for other
ranges of Péclet numbers).

3. Results and discussion

The approximate local Sherwood numbers for a first-order sur-
face reaction can be obtained rewriting Eq. (4) in its local form (Eq.
(7)) and taking its derivative (Eq. (8)).
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Nomenclature

A area
Ai, Bi Airy functions
C concentration
D mass diffusion coefficient
Da Damkhöler number, Da = kL/D
h channel half-width
k kinetic constant
K convective mass transfer coefficient, K ¼ N00=Co

L length of the active portion of the wall
N00 molar flux at the wall
Pe Péclet number, Pe = L2S/D
S shear rate
Sh Sherwood number, Sh ¼ KL=D ¼ N00L=ðDCoÞ
t time
x, y Cartesian coordinates

Greek letters
C gamma function
m kinematic viscosity
h fraction of surface covered
s shear stress

Superscripts and subscripts
* non-dimensional quantity
C infinitely fast reaction
Da finite rate reaction
o reference value
pl platelet
s substrate
w wall

Fig. 1. Physical model and coordinate system.
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