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a b s t r a c t

We consider the effect of suddenly applying a uniform heat flux to a vertical wall bounding a porous
medium which is saturated by a Bingham fluid. We consider both an infinite porous domain and a
vertical channel of finite width. Initially, the evolving temperature field provides too little buoyancy force
to overcome the yield threshold of the fluid. For the infinite domain convection will always eventually
arise, but this does not necessarily happen in the vertical channel. We show (i) how the presence of yield
surfaces alters the classical results for Newtonian flows and (ii) the manner in which the locations of the
yield surfaces change as time progresses.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Bingham fluids are an example of a yield stress fluid. Unlike
Herschel–Bulkeley and Casson fluids, they exhibit a linear stress–
strain relationship once the yield stress is exceeded. They arise in
a wide variety of situations both in the environment and industry,
and examples of the very many natural and man-made fluids
which exhibit a yield stress have been collated and prsented in
the chapter [1].

The aim of the present short paper is to investigate the manner
in which convection arises when a Bingham fluid saturates a por-
ous medium. There already exist some papers on this type of topic,
but they are concerned with the equivalent fluid problem, i.e. there
is no porous matrix present. We refer to the analyses by Yang and
Yeh [2] and Bayazitoglu et al. [3] who studied free convection in a
sidewall-heated channel. They find that steady convection will
only arise whenever the Rayleigh number is sufficiently large that
the buoyancy force is then able to overcome the yield stress. When
flow occurs the velocity profile consists of five regions, with three
regions of flow alternating with two of plug flow (i.e. constant
velocity with no shear). The plug flow regions are themselves mov-

ing and are placed at equal distances either side of the centreline of
the channel. Other papers which consider variations on this theme
are those by Patel and Ingham [4] who consider a mixed convec-
tion with the combination of buoyancy and a driving pressure gra-
dient, Barletta and Magyari [5] who consider a free convection
variant on vertical Couette flow, and Karimfazli and Frigaard [6]
whose study of free convection when the boundary temperatures
vary linearly with distance up the walls. The unsteady analysis of
Kleppe and Marner [7] is also important because it considers the
evolution of the temperature and velocity profiles in a vertical
channel after an sudden change in temperature of one of the verti-
cal walls.

The present paper considers the unsteady unidirection convec-
tion which is set up by suddenly changing the boundary heat flux
of a vertical surface. This is a natural extension to the work of Rees
and Bassom [8] who studied an impulisive change in the boundary
temperature. We will see that the final outcome here has many
qualititative differences from those found in [8]. Again, we will
consider both a semi-infinite domain (i.e. bounded by a single ver-
tical wall), and a vertical channel of constant thickness. As in [8]
buoyancy forces spread into the porous medium due to the diffu-
sion of heat from the heated surface. We find that convection does
not happen at first, but that there is an onset time after which con-
vection persists. We present detailed exact solutions for the loca-
tions of the yield surfaces and overall velocity flux, and an
asymptotic analysis yields highly accurate data for large times.
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2. Governing equations

We follow the early paper by Pascal [9] which employs a
threshold gradient model to describe the one-dimensional flow
of a Bingham fluid in a porous medium:

u ¼ � K
l 1� G

jpx j

h i
px when jpxj > G;

0 otherwise;

(
ð1Þ

where G denotes the threshold gradient (or, more generally, the
threshold body force) above which the fluid yields. When buoyancy
is included as an extra body force, the threshold model becomes,

u¼ �K
l 1� G

j�p�x�qgbðT�T0Þj

h i
�p�x�qgbðT�T0Þð Þ when j�p�x�qgbðT�T0Þj>G;

0 otherwise;

(

ð2Þ
and where x is now the vertical coordinate and u is the correspond-
ing Darcy velocity. We have assumed that the Boussinesq approxi-
mation applies when writing down the buoyancy term, and T0 is the
initial temperature of the porous medium. If a heated vertical sur-
face is of infinite extent in both the positive and negative x-
directions, then there will be a zero horizontal fluid velocity. We
may allow both u and T to be functions only of the horizontal coor-
dinate, y, and time, t, and so the equation of continuity is satisfied
and the heat transport equation is,

rTt ¼ aTy y; ð3Þ
where r is heat capacity ratio between the porous medium and the
saturating fluid, and a is the effective thermal diffusivity of the sat-
urated porous medium. At t ¼ 0 a uniform and steady heat flux, q, is
applied suddenly to the vertical bounding surface:

k
@T
@y

¼ �q; ð4Þ

where k is the thermal conductivity of the medium.
Equations (2) and (3) may be nondimensionalised using the

scalings,

ðx; yÞ ¼ Lðx; yÞ; u ¼ a
L
u; p ¼ al

K
p; T ¼ T0 þ qL

k
h;

t ¼ rL2

a
t; G ¼ al

KL
Rb; ð5Þ

and we obtain,

u ¼
Rah� px � Rb; Rb < Rah� px;

0; �Rb < Rah� px < Rb;

Rah� px þ Rb; Rah� px < �Rb;

8>>><
>>>:

ð6Þ

and

ht ¼ hyy: ð7Þ
In the above the Darcy–Rayleigh number is given by

Ra ¼ qgbqKL2

kla
; ð8Þ

and the parameter, Rb, is given by

Rb ¼ KL
la

G: ð9Þ

This latter parameter is a scaled version of the yield pressure gradi-
ent, G, and might be referred to as a porous convective Bingham
number; hereinafter it is termed the Rees–Bingham number [1].

The lengthscale, L, which was introduced in Eq. (5), will be
taken to be the dimensional width of the vertical channel when
that configuration is being studied. But when the porous medium
occupies a semi-infinite domain there is no natural external
lengthscale that may be used. Therefore we set the Darcy–Rayleigh
number to a unit value, which will then automatically define a nat-
ural lengthscale, L, in terms of the properties of the medium; thus
we have,

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
la

qgbqK

r
: ð10Þ

Nomenclature

Latin letters
An coefficients
Bn coefficients
D equal to ln d
f ðgÞ similarity solution
g gravity
G threshold body force
K permeability
L length scale
n summation index
p pressure
px pressure gradient in the x-direction
q imposed surface heat flux
Q total vertical velocity flux
Ra Darcy–Rayleigh number
Rb Rees–Bingham number
t time
T temperature (dimensional)
T0 ambient (cold) temperature
T1 temperature of heated surface
u vertical Darcy velocity

x vertical coordinate
y horizontal coordinate

Greek letters
a thermal diffusivity
b coefficient of cubical expansion
d transformed time (Eq. (39))
g similarity variable
g1 location of left hand yield surface
g2 location of right hand yield surface
g3 value of g which is equivalent to y ¼ 1
gy location of yield surface
h temperature (nondimensional)
l dynamic viscosity
q reference density
r heat capacity ratio

Other symbols
� dimensional quantities
max maximum value
min minimum value
y yield
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