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a b s t r a c t

An FEM (Finite Element Method) numerical approach of predicting the effective thermal conductivities of
plain woven composites is presented in this paper. Three reducing-size unit cells are formulated by using
different symmetries exhibited in the composite, including translational, reflectional and rotational sym-
metries. Corresponding thermal boundary conditions are derived and validated by the numerical results
of the same problem of different unit cells. Thermal conductivities of the matrix with porosity and the
woven yarns are calculated first, and then used as input data to numerically predict the effective thermal
conductivities of plain woven composite. The influences of porosity and fiber volume fraction on effective
thermal conductivities of studied composites are clarified.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

For its low weight and high strength plain woven composite is
widely used in aeronautics engineering, automobile industries and
other related fields, and the prediction of its mechanical property
has been a hot research topic during past decades [1–4]. With
regard to the service environment, taking structure parts of aircraft
as an example, plain woven composites may experience a complex
and harsh mechanical and thermal test. Accurate predictions of the
composites’ thermal characteristics are of great importance for a
reliable design in many engineering fields and have attracted
researchers’ attention [5–8]. Similar to other composites, the calcu-
lation of effective thermal conductivity of the plain woven com-
posites can be conducted at two length scales, the meso-scale
and macro-scale. The meso-scale corresponds to interwoven yarns
and matrix, while the macro-scale corresponds to woven compos-
ites. The woven yarn can be considered as unidirectional fiber rein-
forced composites and presents transversely isotropic
characteristic. Its axial thermal conductivity is often determined
by so-called classic mixture rule, while the transverse thermal con-
ductivity is usually numerically calculated [9,10]. To the authors’
knowledge, studies that focus on the physical properties of the por-
ous matrix of plain woven composites are very limited. Del et al.
[11] classified and quantified porosities for some specific ceramic

matrix composites (provided by the German Aerospace Research
Establishment). Based on that, their numerical studies [5] took
the influence of porosity into account, and the numerical results
were validated by their experimental ones. Although these works
are meaningful, they are not representative enough for the plain
woven composites and more further works need to be done. On
the other hand, for the study of porous matrix researches about
composites with regular and random distributed second phase
(particle or porosity) were conducted in [12–14], respectively.

At the macro-scale the plain woven composites can be studied
based on the obtained properties of yarns and matrix. Analytical
[1,2] and numerical method (FEM) [3,4] are two common ways
to study the plain woven composites. For various composites with
regular or irregular structures, most researches about the predic-
tion of effective thermal conductivity of composites are often
focused on a less scale element which can represent the larger
scale composites [15–18]. The element is often called the unit cell
or representative volume element (RVE). For textile reinforced
composites such as plain woven composite, this representative ele-
ment, i.e. unit cell can be formulated according to the composites’
geometric symmetries.

According to Ref. [19], three types of symmetries can account
for all symmetries in nature, i.e. reflection about a plane (reflec-
tional symmetry), rotation about a axis by an angle (rotational
symmetry) and translation along a axis (translational symmetry).
Generally speaking, the use of different symmetries will formulate
unit cells of different size and leads to boundary conditions of dif-
ferent complexities. For plain woven composites, a so-called full
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unit cell which corresponds to the full unit cell UC1 of this paper, is
often formulated with the adoption of translational symmetries
only [3,20–22]. This leaves some room to fully employ the advan-
tages of symmetries for further reduction of the size of the unit
cell. Tanov and Tabiei [23] developed the so-called representative
volume cell and one quarter cell and conducted stress analysis with
available strain field without any derivation of the boundary con-
ditions. These two cells, i.e. representative volume cell and one quar-
ter cell, respectively correspond to the quarter unit cell UC2 and the
one-sixteenth unit cell UC3 in this work and will be discussed later.
Li et al. [24] have formulated the one-sixteenth cell. In their paper
the utility of reflectional and rotational symmetries is described in
detail, appropriate mechanical boundary conditions are derived
rigorously according to corresponding symmetries, and the bound-
ary conditions are validated by stress analysis. To the authors’
knowledge, the thermal boundary conditions corresponding to
the above three unit cells have not been discussed in references
so far.

The major contents of the present study are as follows. First the
corresponding thermal boundary conditions for three unit cells, i.e.
the full cell UC1, the quarter cell UC2 and the one-sixteenth cell
UC3, are derived; Then numerical prediction of the effective ther-
mal conductivities of the plain woven composites are imple-
mented. The boundary conditions are validated by the almost
identical numerical results of different unit cells. Third, the influ-
ence of fiber and porosity volume fraction on the thermal charac-
teristics of the plain woven composites is studied. In the paper, it
is assumed that pores only exist in the matrix and the yarn is con-
sidered as unidirectional fiber reinforced composite.

2. Relative temperature and heat flux relations between
corresponding nodes for three symmetric transformations

Before the derivation of the thermal boundary conditions for
the three unit cells, the relative temperature and heat flux relations
between corresponding nodes of the three symmetric transforma-
tions should be specified first. Also it would be helpful to clarify
two kinds of stimulus, the so-called symmetric thermal stimulus

which is the heat flux parallel to the reflection plane or the rotation
axis, and the so-called antisymmetric thermal stimulus which is
the heat flux perpendicular to the reflection plane or the rotation
axis. This idea comes from the analogical relations of heat flux
vs. temperature gradient, and that of stress vs. strain as shown in
Eq. (1). In the equation, ri, ei, qi andrTi are stress, strain, heat flux
and temperature gradient components in i direction, respectively.
C and k are stiffness and thermal conductivities matrix, respec-
tively. These two thermal stimuli respectively correspond to the
symmetric and antisymmetric loadings in mechanics [19,24], as
schematically presented in Fig. 1. In the figure, the thermal stimu-
lus and mechanical loading are displayed. The relations of relative
temperature between corresponding nodes and the relative dis-
placement between corresponding nodes (which are the key rela-
tions used in the derivation of thermal and mechanical boundary

Nomenclature

Abbreviation
UC1 the full unit cell
UC2 the quarter unit cell
UC3 the one-sixteenth unit cell

Symbols
Ai area of the boundary plane perpendicular to i direction
a length in x direction
b length in y direction
C stiffness matrix
c height of woven yarns
h length in z direction
M, M0, M00

arbitrary node M and its corresponding nodes with
symmetric transformations

O, O0, O00 specific node O and its corresponding nodes with sym-
metric transformations

Px, Py reflection plane y = 0, x = 0
Qi sum of the heat flow of all nodes on boundary plane per-

pendicular to i direction
q, qi heat flux and its component in i direction

r radius of spherical pores or fibers
Sx spacings between two neighboring yarns in x directions
Sy spacings between two neighboring yarns in y directions
Vf fiber volume fraction of composite
Vy yarn volume fraction of composite
Vfy fiber volume fraction of woven yarns
u the displacement in x direction
w width of woven yarns
k thermal conductivity matrix
kSiC thermal conductivity of SiC
kxx, kyy, kzz thermal conductivities in x, y, z directions
kya axial thermal conductivity of yarns
kfa axial thermal conductivity of fibers
DT temperature difference
rT ; rTi; rTx; rTy; rTz temperature gradient and its compo-

nents in i, x, y, z directions
ri stress component in i direction
ei strain component in i direction

Subscripts
x1, y1, z1 coordinates of nodes
x, y, z x, y, z component directions

Fig. 1. Reflectional symmetry and the antisymmetric stimuli.
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