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a b s t r a c t

An analytic expression is derived for the radiation view factor between two arbitrarily oriented planar
triangles and, by a simple generalization, planar polygons. Unlike most attempts so far, which use the
contour integration technique, Nusselt’s unit sphere method is used in this work. Two important features
of the analytical expression derived here are that: (1) the use of numerical quadrature is not necessary for
the computation, and (2) the symmetry of the expression ensures that reciprocity of view factors is
preserved.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Radiation view factors, also known as shape factors or configu-
ration factors or form factors, play a key role in the computation of
radiation heat transfer [1,2] as well as global illumination in com-
puter graphics [3]. The view factor between two surfaces is defined
as the fraction of diffuse radiation from one surface that is inter-
cepted by the second surface. Mathematically, it is given by:
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Unless the configuration of surfaces is such that analytic expres-
sions are available in literature [1], view factors have to be com-
puted numerically. The most general method for computing the
four dimensional integral in Eq. (1) is the Monte Carlo method
[4]. Since Monte Carlo simulations can be too expensive for large
three-dimensional configuration of surfaces, efficient deterministic
methods to evaluate Eq. (1) have been developed. The four integra-
tions necessary to compute Eq. (1) can be reduced to two integra-
tions by using Stokes theorem of vector calculus [5,6,1,2] or, in
certain cases, by using Nusselt’s unit sphere method [7,8,1,2]. On
using Stokes theorem, the resultant expression for F12 is a double
contour integral along the edges of the surfaces between which
F12 is to be determined. When the contour along one of the surfaces

can be decomposed into straight lines, the integral along that con-
tour can be calculated analytically by using the technique described
by Mitalas and Stephenson [9]. Nusselt’s unit sphere method, also
known as the projection technique, results in a surface integral on
surface 1. Many analytic and numerical results for diffuse view
factors between specific configurations of planar surfaces (and
non–planar too) are given in Ref. [10], and references therein.
Mathiak [11], Ambirajan and Venkatesh [12], Mazumder and
Ravishankar [4] use the contour integral method and numerical
quadrature to obtain view factors between arbitrarily oriented pla-
nar polygons.

The goal for this work was to determine if an analytic expres-
sion exists and, if so, to calculate the view factor between two arbi-
trarily oriented planar triangles or polygons. The motivation for
considering these shapes comes from mesh generation software
used for finite element analysis and computer graphics where most
arbitrary surfaces are discretized into planar triangular or polygo-
nal facets. In this work, two triangles are used to aid the derivation
of an analytic expression for view factor; the extension to planar
polygonal shapes requires a trivial change (see last sentence of
Section 3.2). The configuration of the two arbitrarily oriented pla-
nar triangles, entirely visible to each other, is shown in Fig. 1.
Without loss of generality, triangle 1 is assumed to lie in the
z ¼ 0 plane. The vertices of triangle 1 have position vectors
~rð1Þ1 ;~rð1Þ2 ;~rð1Þ3 , and those on triangle 2 have position vectors
~rð2Þ1 ;~rð2Þ2 ;~rð2Þ3 . As Lipps [13] has suggested, the view factor between
the two planar triangles should be a function of the coordinates
of the vertices of both triangles. In fact, Schroder and Hanrahan
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[3] had affirmed that it was indeed possible to find analytic expres-
sions for view factors between planar polygons.

The result obtained here is similar to that of Schroder and
Hanrahan, though the path taken is different. First, Schroder and
Hanrahan use the contour integral method as the starting point.
The unit sphere method is used here. The primary reason for this
choice over the contour integral method was our appreciation for
the geometric appeal and interpretation of the unit sphere method.
Second, the expression derived by Schroder and Hanrahan appears
complicated because of the presence of complex square roots [14],
the signs of which have to be chosen carefully. The expression for
view factors derived in this work is, in the author’s assessment, in a
form more suitable for use in numerical codes. The expression for
view factor is rendered in a symmetric form so that it becomes
apparent that the reciprocity of view factors between two surfaces
is obeyed.

As derived by Schroder and Hanrahan, the final expression for
view factor between two planar polygons contains the dilogarithm
function [15], the evaluation of which necessitates the usage of
numerical quadrature [4]. In this work, it is shown that what is
needed is not the dilogarithm function itself, but the imaginary
part of the dilogarithm function. As shown by Lewin [16], the
imaginary part of the dilogarithm function is simpler to evaluate
than the real part. Since the imaginary part of the dilogarithm
function can be computed without any numerical integration
(see Section 4), it qualifies as an analytic result.

The structure of the rest of this paper is as follows: In Section 2,
an analytic expression for the view factor between an infinitesimal
planar area and a planar triangle is determined using Nusselt’s unit

sphere method. In Section 3, the analytical expression for view fac-
tor between two planar triangles is derived by integrating (twice)
the result from Section 2. The first of the two integrations (see
Section 3.1) is relative simple and results in an expression for the
view factor in the form of a line integral along the edges of one
of the triangles. A parametrization of the edges of the triangles is
introduced in Section 3.2, using which an analytical expression
for the view factor between two planar triangles is derived. But
for the dilogarithm function, the other terms of the expression
are elementary functions. In Section 4, the dilogarithm function
is replaced by Clausen’s integral, which can be evaluated easily

Nomenclature

APð~xÞ 1
p j APð~xÞ j is the view factor of triangle 2 at ~x.

AðpqÞ
P ð~xÞ contribution to j APð~xÞ j from line between ~rð2Þp and

~rð2Þq ;p ¼ 1;2;3; q ¼ PðpÞ.
A1 area of surface 1
CðA;B;C;AÞ a closed contour through the points A;B;C;A in that

order
ClðNÞ2 ðhÞ approximation to Clausen’s integral with Chebyshev

polynomials up to order 2N þ 1
Cl2ðhÞ Clausen’s integral. See Eq. (26) for definition
F12 view factor of surface 2 at surface 1

GðpqÞ
ij;k see Eq. (15) for definition (k ¼ 1;2)

L non-dimensionalized version of l, see Eq. (14)

Li2ðzÞ dilogarithm function, defined as �
R 1

0 dt logð1�ztÞ
t

PðiÞ cyclical permutation of i. PðiÞ ¼ 2;3;1 when i ¼ 1;2;3.
R distance between two differential area elements on A1

and A2

S non-dimensionalized version of s, see Eq. (14)
TnðhÞ Chebyshev polynomial of order n. TnðhÞ ¼ cos nh

P Lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ 1

p
W Sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ 1

p
bn coefficient of T2nþ1 in expansion of Cl2
dij;pq j dij;pq j is the distance between ~rð?;1Þij;pq and ~rð?;2Þpq;ij

dAi differential area element on surface i (i ¼ 1;2)
~f ðS; LÞ see Eq. (22b) for definition

f ðS; LÞ see Eq. (21b) for definition

gðpqÞ
ij;k see Eq. (14) for definition (k ¼ 1;2)

gpqðx; yÞ see Eq. (8) for definition
~l0pq unit vector from ~rð2Þp to ~rð2Þq

~lpq;ij unit vector along the line joining ~rð2Þp and ~rð2Þq

l; l0 parametrization variables for each edge along triangle
2

~rðnÞi position vector of vertex i (i ¼ 1;2;3) on triangle n
(n ¼ 1;2).

~rð?;1Þij;pq point on line joining ~rð1Þi and ~rð1Þj which is closest to

line joining ~rð2Þp and ~rð2Þq

~rð?;2Þpq;ij point on line joining ~rð2Þp and ~rð2Þq which is closest to

line joining ~rð1Þi and ~rð1Þj

~s0ij unit vector from ~rð1Þi to ~rð1Þj

~sij;pq unit vector along the line joining ~rð1Þi and ~rð1Þj

s; s0 parametrization variables for each edge along triangle
1

ðx2
p ; y

0; zð2Þp Þ coordinate of point ~rð2Þp ;p ¼ 1;2;3

ðx2
q ; y

0; zð2Þq Þ coordinate of point ~rð2Þq ; q ¼ 1;2;3
~x position vector of location on triangle 1 (¼ xx̂þ yŷ)
xðpqÞ
< smallest value of x when x-axis is parallel to projection

of ~rq �~rp on z ¼ 0 plane
xðpqÞ
> largest value of x when x-axis is parallel to projection

of ~rq �~rp on z ¼ 0 plane
y<ðxÞ lower limit of integration along y at constant x
y>ðxÞ upper limit of integration along y at constant x

Uð2Þp projection of ~rð2Þp (r ¼ 1;2;3) on a unit hemisphere
centered at ðx; y;0Þ on triangle 1

a cos�1ðŝij;pq � l̂pq;ijÞ
APðxÞ 1

2 j ðx� xð2Þp Þzð2Þq � ðx� xð2Þq Þz
ð2Þ
p j

hi angle between the surface normal to triangle i and the
position vector from a differential element on triangle
i to one on the other triangle.

~qð2Þi
~rð2Þi �~x(i ¼ 1;2;3)

Fig. 1. Configuration of two arbitrarily oriented planar triangles. One of the
triangles (triangle 1) is assumed to be in the x� y plane. The vertices of the two
triangles can be represented as ~rðjÞi ; i ¼ 1;2;3 and j ¼ 1;2. The x and y axes can be
oriented arbitrarily in the plane of triangle 1.
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