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a b s t r a c t

Laminar natural convection flow inside multi-layered spherical shells with internal hot and external cold
boundaries was investigated. Direct numerical simulations (DNS), which were performed by utilizing the
immersed boundary method, addressed the fully 3D natural convection flow inside spherical shells with
concentric, eccentric, equi-spaced and non-equi-spaced zero-thickness internal baffles. The insulation
efficiency of the spherical shell was studied for up to four equi-spaced concentric internal layers. A
unified functional dependency correlating modified Nu� and Ra� numbers was derived for spherical shells
with up to four equi-spaced concentric internal layers. The effects of both vertical and horizontal
eccentricity of the internal layers and of the width variation of concentric layers on the overall insulating
performance of the spherical shell were investigated and quantified in terms of the Nu–Ra functionality.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Buoyancy-driven flow developing inside spherical annuli
has been the subject of considerable research, both theoretical
and experimental for the past fifty years. Typically, the
buoyancy-driven flow between two isothermal concentric spheres
(where each sphere is held at a different temperature) has been
investigated as a function of the diameter ratio, / ¼ Di=Do, and
the Rayleigh, Ra, and Prandtl, Pr, numbers. The pioneering experi-
mental studies of Bishop et al. [1,2], which focused on visualization
of the flow, indicated three distinct types of flow pattern –
‘‘crescent eddy’’, ‘‘kidney-shaped’’ and ‘‘falling vortices’’ – that
depend on the diameter ratio, /, of the shells. Their experimental
results were confirmed by the study of Mack and Hardee [3],
who derived a low-Rayleigh-numbers analytical solution for the
natural convection of air between two concentric spheres. More
recently, the natural convection flow of working fluids other than
air (namely, water and silicone oils) was experimentally addressed
by Scanlan et al. [4] and visualized by Yin et al.[5]. The later group
described naturally induced flow patterns and categorized the type
of the flow for each fluid in terms of the inverse of the relative gap
width and the Rayleigh number. Subsequent numerical studies on
steady and transient natural convection flow inside spherical
shells extended the state of the art to an even wider range of Pr

(0:71 6 Pr 6 100) [6,7] and Ra (102
6 Ra 6 5� 105) [7] numbers

and to the analysis of vertically eccentric configurations [8].

The theoretical analysis of unsteady natural convection inside a
differentially heated spherical annulus is a challenging problem,
since different flow regimes can dominate locally in its
different regions, taking the form of Rayleigh-Bènard convection
at the top of the shell, of a differentially heated cavity at the
near-equatorial region, and of a thermally stable flow regime at
the bottom of the shell. Moreover, instabilities and transition
scenarios are sensitive to the value of the Pr number and to the
ratio of the internal to external diameter / [9,10]. For shells with
an internal hot boundary and an external cold boundary, the flow
patterns vary with the ratio /: Powe et al. [11] described a ‘‘mod-
ified kidney shaped eddy’’ for wide shells (/ 6 0:5), an ‘‘interior e
xpansion–contraction’’ for 0:5 6 / � 0:65, a ‘‘three dimensional
spiral’’ flow for 0:65 6 / � 0:85, and a ‘‘falling vortices’’ pattern
for narrow shells (0:85 6 /). Futterer et al. [12] reported that the
flow inside shells of large and moderate widths (0:41 6 / � 0:71)
with a cold internal boundary and a hot external boundary
exhibited an unsteady ‘‘dripping blob’’ phenomenon for Pr ¼ 1.

Natural convection inside a spherical annulus comprises an
essential heat transfer mechanism in various engineering design
problems, such as in solar energy collectors, storage tanks, thermal
energy storage (TES) systems and nuclear reactors. Another poten-
tial application of spherical annuli is related to the design of the
Titan Montgolfiere hot air balloon, which was recently chosen by
NASA as the air-robot vehicle of choice for the exploration of
Titan’s atmosphere. Given Titan’s low gravity (one-seventh that
of Earth) and its cryogenic atmospheric temperatures (72–94 K),
heat transfer by radiation can safely be neglected, and natural
convection can be regarded as the only heat transfer mechanism
for the stationary suspended balloon. Such a balloon, designed to
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provide a minimized heat flux rate through its walls, could serve as
a sustainable air-robot platform for carrying a payload sufficient
for a long-term space mission.

The concept of the double-walled Titan Montgolfiere, for which
the spherical shell plays the role of a thermal insulator separating
the hot interior of the balloon from the cold surroundings, has
recently been established and investigated by Samanta et al. [13]
and Feldman et al. [14]. One of the main findings of both studies
was that theoretical estimation of the heat flux rate through the
boundaries of the insulating gap of both scaled and full-scale bal-
loons has the greatest uncertainties. This finding motivated further
research [15], which was focussed on a more detailed analysis of
transitional and fully turbulent natural convection flows inside
narrow spherical differentially heated shells (0:8 6 / � 0:9) and
yielded an improved Nusselt (Nu)-Ra correlation derived speci-
fically for that range of / values.

The current study is aimed at further developing high-fidelity
computational fluid dynamics (CFD) concepts for minimizing the
heat flux rate through an insulating gap of spherical shape. In
particular, the natural convection flow inside multi-layered
differentially heated spherical shells with internal baffles of zero
thickness is studied by DNS. The flow developing inside spherical
shells characterized by both equi-spaced/non-equi-spaced and
concentric/eccentric distributions of the internal baffles is simu-
lated. The immersed boundary method (IBM) is utilized for treating
the internal and external shell walls. Additionally, a novel modified
Nu� � Ra� correlation is derived for a spherical shell with up to
four internal equi-spaced concentric layers in the range of
103
6 Ra 6 107.

2. Physical model and governing equations

The natural convection flow inside single- or multi-layered
spherical shells formulated in Cartesian coordinates ðx; y; zÞ with
the origin located at the center of the shell and gravity acting oppo-
site to the positive direction of z axis (see Fig. 1) is governed by the
following non-dimensional Navier–Stokes (NS) and energy
equations:

r � u ¼ 0 ð1Þ

@u
@t
þ ðu � rÞu ¼ �rpþ

ffiffiffiffiffiffi
Pr
Ra

r
r2uþ h~ez ð2Þ

@h
@t
þ ðu � rÞh ¼ 1ffiffiffiffiffiffiffiffiffiffi

PrRa
p r2h; ð3Þ

where u = (u,v,w), p, t, and h are the non-dimensional velocity,
pressure, time and temperature, respectively, and~ez is a unit vector
in the vertical (z) direction. The Boussinesq approximation
q ¼ q0ð1� bðT � TcÞÞ was applied to address the flow buoyancy
effects. As a result, an additional temperature term appears as a
source in the momentum equation in the z direction (see Eq. (2)),
thereby allowing for the temperature–velocity coupling. The prob-
lem is scaled by L, U =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbLDT

p
, t = L=U, and P = qU2 for length,

velocity, time, and pressure, respectively. Here, L ¼ Ro � Ri is the
total shell width, defined as a difference between the outer, Ro

and the inner Ri radius of the shell, q is the mass density, g is the
gravitational acceleration, b is the isobaric coefficient of thermal
expansion, and DT=Th � Tc is the temperature difference between
the hot and cold boundaries. The non-dimensional temperature h
is defined as h = ðT � TcÞ=DT . The Ra and Pr numbers are
Ra = gb

ma DTL3 and Pr = m/a, where m is the kinematic viscosity and a
is the thermal diffusivity. All the simulations were performed for
the value of Pr ¼ 0:71 corresponding to air.

The IBM [16] was implemented for imposing Dirichlet boundary
conditions for the temperature and velocity fields at the spherical
shell boundaries and the internal baffles. The IBM is not a stan-
dalone solver; rather, it requires a ‘‘driver’’ with which to be com-
bined and its implementation should be perceived as a philosophy
of enforcing boundary conditions. In principle, such a ‘‘driver’’ can
be any time-marching solver, whose efficiency is typically boosted
by choosing a computational domain of rectangular/prismatic
shape and by utilizing a structured grid for spatial discretization
of the NS and energy equations. In the present formulation the flow
within the differentially heated spherical shell is an integral part of
a more general natural convection flow within the whole cube,
including also the outer (R > Ro) and the inner (R < Ri) regions
(see Fig. 1). The flow was simulated by applying no-slip boundary
conditions at all the cube faces, which were held at a constant tem-
perature Tc (the same as the temperature of external boundary of
the spherical shell). In the following, only the results relevant to
the spherical shell region are discussed. Below, we detail the IBM
formulation implemented in the present study.

Fig. 2 shows the setup of a typical spatial discretization imple-
mented on a staggered grid. The grid is characterized by offset
velocity, temperature and pressure fields. An immersed object of
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Fig. 1. Physical model and system of coordinates for the spherical shell: (a) with no internal baffles; (b) with a single internal baffle and two concentric equi-spaced layers.

Y. Gulberg, Y. Feldman / International Journal of Heat and Mass Transfer 91 (2015) 908–921 909



Download	English	Version:

https://daneshyari.com/en/article/7056439

Download	Persian	Version:

https://daneshyari.com/article/7056439

Daneshyari.com

https://daneshyari.com/en/article/7056439
https://daneshyari.com/article/7056439
https://daneshyari.com/

