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a b s t r a c t

The relaxation factor is a key parameter in gradient-based inversion and optimization methods, as well as
in solving nonlinear equations using iterative techniques. In gradient-based inversion methods, the relax-
ation factor directly affects the inversion efficiency and the convergence stability. In general, the bigger
the relaxation factor is, the faster the inversion process is. However, divergences may occur if the relax-
ation factor is too big. Therefore, there should be an optimal value of the relaxation factor at each itera-
tion, guaranteeing a high inversion efficiency and a good convergence stability. In the present work, an
optimization technique is proposed, using which the relaxation factor is adaptively updated at each iter-
ation, rather than a constant during the whole iteration process. Based on this, a new inverse analysis
method is developed for solving multi-dimensional transient nonlinear inverse heat conduction prob-
lems. One- and two-dimensional transient nonlinear inverse heat conduction problems are involved,
and the instability issues occurred in the previous works are reconsidered. The results show that the
new inverse analysis method in the present work has the same high accuracy, the same good robustness,
and a higher inversion efficiency, compared with the previous least-squares method. Most importantly,
the new method is more stable by innovatively optimizing and adaptively updating the relaxation factor
at each iteration.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Inverse heat conduction problems (IHCPs) are frequently
encountered in various important engineering applications [1,2].
IHCPs are ill-posed/conditioned, which are very challenging,
because small disturbances of input conditions or measurement
errors can cause large solution errors and oscillations. The objec-
tive of IHCPs is to identify the boundary or initial conditions,
thermo-physical properties or geometric parameters by using
additional information such as temperature measurements within
the domain or on the boundary [3]. Transient states and
temperature-dependent thermo-physical properties are usually
involved in IHCPs. Consequently, the solution of a transient nonlin-
ear inverse heat conduction problem is difficult, especially if
multi-dimensions and measurement errors are concerned. IHCPs
have been extensively studied [3–14] and many methods have
been proposed [15–21].

Generally, inversion methods can be classified into two cate-
gories: one is the gradient-based method and the other is the
stochastic method [3,22]. The advantage of the stochastic methods
is their capability in searching for the global optimum. However,
these methods usually require a large number of iterations [23].
The advantages of the gradient-based methods are the fast conver-
gence speed and the high accuracy. In gradient-based methods, the
determination of sensitivity coefficients [3,23] is the main work.
However, sensitivity coefficients are difficult to be precisely calcu-
lated if multi-dimensions, transient states and nonlinearities are
involved, and this is the main reason why so many stochastic
methods have been developed.

In recent years, the first author and the co-authors have been
focused on the accurate calculation of sensitivity coefficients in
gradient-based methods [3,23–27]. We introduced the com
plex-variable-differentiation method (CVDM) [28] into inverse
heat transfer problems, and have successfully overcome the diffi-
culty in accurately calculating sensitivity coefficients. Based on
CVDM, a least-squares method was developed, and numerical
examples showed that it was efficient, accurate and robust [23–
27].

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.07.009
0017-9310/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel./fax: +86 411 84706332.
E-mail addresses: miaocui@dlut.edu.cn (M. Cui), xwgao@dlut.edu.cn (X.-w. Gao).

International Journal of Heat and Mass Transfer 90 (2015) 491–498

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2015.07.009&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.07.009
mailto:miaocui@dlut.edu.cn
mailto:xwgao@dlut.edu.cn
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.07.009
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


In the previous works [23–27], the relaxation factor was a key
parameter between 0 and 1, and it was a constant during the whole
iteration process, which was empirically determined by trials. The
relaxation factor directly affects the inversion efficiency and the
convergence stability. In general, the bigger the relaxation factor
is, the faster the inversion process is [26]. However, divergences
may occur if the relaxation factor is too big [26]. We adopted
dimensionless objective function [23] to overcome this drawback,
and the convergence stability was improved. Unfortunately, diver-
gences would occur again if the relaxation factor became bigger
enough, under some circumstances, and the value of the relaxation
factor was still empirically determined by trials.

Through the above analysis, the relaxation factor should not be
too small for a fast iteration, while it should not be too big for a
convergence stability. Therefore, there should be an optimal value
of the relaxation factor at each iteration, guaranteeing a high inver-
sion efficiency and a good convergence stability. This is the main
idea that the present work stems from.

In the present work, a relaxation factor optimization technique
is proposed, based on which a new inverse analysis method is
developed. In the new method, the least-squares method in the
previous works [23–27] is employed, and the relaxation factor is
adaptively updated at each iteration, rather than an empirical con-
stant during the whole iteration process. The advantages of high
efficiency, good accuracy and robustness of the least-squares
method are to be kept, and the convergence stability is expected
to be improved, to effectively resist the ill-posedness.

The relaxation factor is a key parameter in gradient-based
inversion and optimization methods, as well as in solving nonlin-
ear equations using iterative techniques. To the best knowledge
of the authors, it is the first study in optimizing the relaxation fac-
tor. This would be a major contribution of the present work.

Multidimensional transient nonlinear inverse heat conduction
problems are involved. The instability issues occurred in one-
and two-dimensional transient nonlinear inverse heat conduction
problems in the previous works [23,26] are reconsidered.

2. Multidimensional transient nonlinear inverse heat
conduction problems

2.1. One-dimensional transient nonlinear heat conduction problem

Consider a one-dimensional transient nonlinear heat conduction
problem, in which the source term and the phase change are not
involved. The heat conduction problem with temperature-
dependent thermo-physical properties can be written as follows:
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with the initial condition given in Eq. (2).

tðx; sÞjs¼0 ¼ tðxÞ ð2Þ

The boundary conditions in Eq. (3) are considered.
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2.2. Two-dimensional transient nonlinear heat conduction problem

The two-dimensional transient nonlinear heat conduction prob-
lem with temperature-dependent thermo-physical properties can
be written as follows:
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with the initial condition given in Eq. (5).

tðx; y; sÞjs¼0 ¼ tðx; yÞ ð5Þ

and the Neumann boundary conditions given as
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¼ quðx; sÞ ð6Þ

Nomenclature

a coefficient to be recovered in Eq. (30), W/m2

b coefficient to be recovered in Eq. (30), 1/s
c heat capacity, J/(kg K)
d coefficient to be recovered in Eq. (30)
Erms root mean square deviation between the recov-

ered/inverted and the exact/real values
f(X) real function with variable X
f(X + ih) complex function with real variable X and imaginary

part h, to be expanded into Taylor series
F dimensionless objective function
h imaginary part in complex variable
K the iteration number
L the length of the modeled object in x-direction, m
M total number of measured temperatures
N total number of inverted parameters
q heat flux, W/m2

R residual vector, K
t temperature, K
W the width of the modeled object in y-direction, m
w relaxation factor
X real variable in function f
x x-coordinate, m
y y-coordinate, m
z vector of inverted parameters

Greek
c exact value
D change in variable
f random measurement error
g random number
k thermal conductivity, W/(m K)
n small positive number
q density, kg/m3

v recovered/inverted value
s heating time, s

Subscripts
0 initial time
b bottom
exact exact
i the ith component of a vector
l left
r right
u upper

Superscripts
0 initial guess
⁄ measured
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