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a b s t r a c t

The unsteady, conjugate, forced convection heat transfer from a fluid sphere to a surrounding fluid flow in
the presence of viscous dissipation has been analysed. The fluid flow inside and outside the sphere was
considered laminar, axisymmetric, steady and incompressible. The heat balance equations were solved
numerically in spherical coordinates system by a splitting finite difference method. The influence of
the Reynolds, Brinkman and Peclet numbers on the heat transfer mechanism and rate was analysed
for different values of the physical properties ratios (thermal conductivity ratio, heat capacity ratio,
viscosity ratio and density ratio).

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Viscous dissipation (heating) describes the degradation of
mechanical energy into thermal energy. This phenomenon occurs
in all flow systems. However, for most flow problems, the effect
of viscous dissipation is considered negligible. It is important only
for systems with large viscosity and large velocity gradients.

The influence of the viscous dissipation on the heat transfer was
recently analysed for the following laminar flow problems:

(i) heat transfer in micro-heat-sinks for regular fluids flow [1,2]
or for nanofluids flow [3,4];

(ii) heat transfer for laminar slip flow in micro-tubes, [5–9];
(iii) heat transfer in cavities with an inner rotating cylinder, [10];
(iv) thermo-convective instability in regular fluids or

fluid-saturated porous medium, [11] (and the references
cited herein).

For flow in fluid-saturated porous media different approaches
were developed for the viscous dissipation function, [12–14].

The results presented in [1–11] (and the references cited
herein) show that viscous dissipation is a strong function of the
geometry of the system, Reynolds number, Brinkman number,
Prandtl (or Peclet) number, Knudsen number (only for problem
(ii) – the Knudsen number refers to the degree of rarefaction)
and the Gebhart number (only for problem (iv)). The conclusion

drawn in [1–11] is: ignoring viscous dissipation could affect accu-
rate flow simulations and measurements.

The influence of viscous dissipation on the conjugate heat trans-
fer from a sphere to a surrounding fluid flow was not analysed.
Viscous dissipation is a source term for the energy balance equa-
tion. Until now, the chemical reaction was the only source/sink
term considered in the analysis of the conjugate mass/heat transfer
from a sphere to a surrounding fluid flow, [15–23]. The chemical
reaction takes place in the surrounding fluid (external chemical
reaction) [16,17,19] or inside the sphere (internal chemical reac-
tion) [15,18–23]. The following types of chemical reaction were
analysed:

- first-order irreversible, isothermal, [15–17,19];
- first-order irreversible, non-isothermal, [18];
- second-order irreversible, isothermal, [20,22,23];
- consecutive, second-order, isothermal, [21].

The results presented in [15–23] show that the conjugate
heat/mass transfer from a sphere to a surrounding fluid flow in
the presence of a chemical reaction depends on the chemical reac-
tion strength, type and location.

The aim of the present work is to analyse the influence of the
viscous dissipation on the unsteady, forced convection, conjugate
heat transfer from a fluid sphere to a surrounding fluid flow. This
problem was not investigated until now. Compared to the chemical
reaction, viscous dissipation is a source term that does not depend
on the process variables (concentration and/or temperature). The
present computations are focused on the influence of the flow
regime (Reynolds number), Brinkman and Peclet numbers on the
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heat transfer mechanism and rate for different values of the phys-
ical properties ratios (thermal conductivity ratio, heat capacity
ratio, viscosity ratio and density ratio).

This paper is organised as follows. In Section 2 we describe the
mathematical model of the problem. Section 3 presents the numer-
ical algorithm. The numerical experiments made and the results
obtained are presented in Section 4. Finally, some concluding
remarks are briefly mentioned in Section 5.

2. Model equations

Consider the laminar, viscous, steady, axisymmetric, incom-
pressible flow of a Newtonian fluid with a superficial velocity U0

and initial temperature T2,0 past a fluid sphere with initial temper-
ature T1,0. Inside the sphere the flow is also laminar, steady, incom-
pressible, axisymmetric, viscous and the fluid is Newtonian. The
following additional assumptions are considered valid:

- during the heat transfer process, the volume and shape of the
sphere remains constant;

- the effects of buoyancy and the work done by pressure changes
are negligible;

- the physical properties are uniform, isotropic and constant;
- no emission or absorption of radiant energy;
- no phase change;
- no chemical reaction inside the sphere or in the surrounding

medium.

For the scenario presented previously, the conjugate heat trans-
fer is governed by the following dimensionless convection–diffu-
sion equations, [24]:
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i = 1 for the interior of the sphere (r < 1) and i = 2 for the exterior of
the sphere (r > 1).

The boundary conditions are:
- axis of symmetry, h = 0, p;

@Zi

@h
¼ 0; i ¼ 1; 2; ð2aÞ

- surface of the sphere, r = 1;

Z1 ¼ Z2; U
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@r
; ð2bÞ

- centre of the sphere, r = 0;

Z1 ¼ finite; ð2cÞ

- free stream, r ?1 (r = r1);

Z2 ¼ 0: ð2dÞ

The dimensionless initial conditions are:

s1ð2Þ ¼ 0; Z1 ¼ 1; Z2 ¼ 0: ð3Þ

When the viscosity ratio is not equal to one, the viscous dissipa-
tion function is discontinuous across the interface. According to
Slattery [25], ‘‘In the context of energy transfer, the most common
interfacial phenomena arise either from the temperature dependence
of the interfacial tension or from phase changes’’. From the assump-
tions considered valid in this work, the following statements can
be made:

- there is no mass transfer through the interface;

Nomenclature

a radius of the sphere
Br Brinkman number, Br = l U0

2/k (T1,0 � T2,0)
cP heat capacity
d diameter of the sphere, d = 2a
k thermal conductivity
Nu instantaneous average Nusselt number
Nuh instantaneous local Nusselt number
Pe Peclet number, Pe = U0dqcP/k
Pr Prandtl number, lcP/k
r dimensionless radial coordinate, r⁄/a, in spherical coor-

dinate system
r⁄ radial coordinate in spherical coordinate system
Re Reynolds number, U0dq/l
t time
T temperature
U0 velocity far away from the sphere
VR dimensionless radial velocity component
Vh dimensionless tangential velocity component
Z dimensionless temperature defined by the relation,

Z2ð1Þ ¼
T2ð1Þ�T2;0

T1;0�T2;0

Greek symbols
a thermal diffusivity
U thermal conductivity ratio, k1/k2

l dynamic viscosity
h polar angle in spherical coordinate system
j dynamic viscosity ratio, l1/l2

q density
s dimensionless time or Fourier number, s = 4ta/d2

v density ratio, q1/q2

w dimensionless stream function
N heat capacity ratio, (q1 cP,1)/(q2 cP,2)

Subscripts
1 refers to the interior of the sphere
2 refers to the exterior of the sphere
st steady state value
0 initial conditions
1 refers to the outside boundary condition
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