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a b s t r a c t

The techniques for solving the Inverse Heat Conduction Problem represent useful tools for designing heat
transfer apparatuses. One of their most challenging applications derives from the necessity of catching
what happens inside a heat transfer apparatus by monitoring the temperature distribution on the
external wall of the device, possibly by means of contactless experimental methodologies. The research
presented here deals with the application of a solution strategy of the Inverse Heat Conduction Problem
(IHCP) aimed at estimating the local heat transfer coefficient on the internal wall surface of a pipe, under
a forced convection problem. The solution strategy, formulated for a 2D model, is based on the
Quadrupole Method (QM) coupled to the Truncated Singular Value Decomposition approach, used to
cope with the ill-conditioning of the problem. QM presents some advantages over the more classical
domain or boundary discretization methods as for instance the fact that, being meshless, brings to a
reduction of the computational cost. The analytical model, built under the QM, is validated by means
of numerical simulations and the numerical outputs are then used as synthetic data inputs to solve
the IHCP. The estimation methodology is also applied to experimental data regarding a forced convection
problem in coiled pipes. Moreover, the adopted solution technique is compared to other two well-known
and consolidated approaches: Finite Element Method coupled to the Tikhonov Regularization Method
and Gaussian Filtering Technique. The comparison highlights that, for the problem here investigated,
the Quadrupole Method coupled to the Truncated Singular Value Decomposition and Finite Element
Method coupled to the Tikhonov Regularization Method perform better than the Gaussian Filtering
Technique when the noise level is low, while, for higher noise level values, their efficiency is almost
comparable, as it happens in the considered experimental study case.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A very challenging task in many engineering applications
derives from the necessity of catching what happens inside a heat
transfer apparatus by monitoring a physical quantity from outside.
This could be very useful in cases in which it is not possible to
adopt intrusive experimental methodologies to inspect the inside
of the apparatus, for mechanical or safety reasons, like for instance
in nuclear applications or in any internal flow applications where
the internal surfaces cannot be directly surveyed. A straightfor-
ward solution for this interesting issue, can be found in the formu-
lation of the Inverse Heat Conduction Problem (IHCP) in the
bounding wall of the device, by monitoring, possibly by means of

contactless experimental methodologies, the external wall surface
temperature distribution.

Among the several possible applications of this approach, the
one that aims at estimating the heat flux or the convective heat
transfer coefficient distribution over the internal wall of a pipe,
starting from the external wall temperature distribution, has
proved to be newsworthy within the applied research on heat
transfer.

Some successful applications of this methodology have been
presented with regards to the forced convective heat transfer in
coiled pipes [1]. In these geometries, in fact, the convective heat
transfer coefficient varies significantly along the wall periphery,
due to the flow pattern that develops as a consequence of curva-
ture and the necessity of monitoring its distribution often then
arises in industrial applications [2].
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Regarding IHCPs, several solution strategies have been sug-
gested under both the parameter estimation and function estima-
tion approach [3] adopting both numerical and analytical models.

Among the numerical solution techniques a relative new and
particularly interesting method for the solution of problems in
which the boundary is of major importance or requires special
attention, is represented by the singular boundary method (SBM)
[4,5] which presents some advantages over the more classical
domain or boundary discretization methods, as for instance the
fact that it is meshless that brings to a reduction of the computa-
tional cost.

Analogous advantages are provided also by the Quadrupole
Method (QM) which is an explicit analytical method of representa-
tion of linear systems available for simple geometries. There are
different versions of this technique, depending on the type of
problem under study, but there is anyway a common based
methodology. In its simpler version in heat conduction its core
are 2 � 2 matrices that link transforms of both temperature and
heat flux on one surface of the body under analysis to the same
quantities on another surface [6]. The transformation could be both
in Fourier and Laplace space. One of its main interests is to get
analytical solutions in the transformed domain. This approach will
be hereby used in a cylindrical geometry, where a Fourier transfor-
mation along the angular coordinate will be implemented.

However, this approach does not completely bypass all the
difficulties embedded in the IHCP, in particular it does not solve
the complication due to the ill-conditioned character of the prob-
lem. In order to bypass this crucial issue, inevitably embedded in
the inverse problem formulation, many techniques based on the
processing of the experimental data have been suggested and
validated in literature.

Among these techniques, the function specification methods
[3,7], iterative methods [8–10], methods based on filtering propri-
eties [11–14] and regularization techniques[15–17] are found.

Regarding the regularization techniques, Tikhonov Regulariza-
tion Method [16] and Truncated Singular Value Decomposition
(TSVD) [17] are two of the most common.

The TSVD method has been applied to solve IHCP in steady (see
for instance [18,19]) and transient regimes (see for instance [20]).

The stabilizing effect of this method is based on the elimination of
the highest modes of the input signal and it has been assimilated to
a data filtering approach [21].

The present paper deals with the estimation of the local heat
transfer coefficient at the fluid-internal wall interface in forced
convection pipe flow problems (see for instance [22] for the same
kind of cylindrical geometry); the solution strategy, based on the
formulation of the IHCP in the wall solid domain and on the use
of the external wall surface temperature distribution as experi-
mental input data, is developed by applying the Quadrupole
Method associated to TSVD.

In order to assess the performance of the proposed approach,
the results are compared with the ones obtained with two other
well known and consolidated techniques: Finite Element Method
(FEM) coupled to Tikhonov Regularization Method (TRM) [1] and
Gaussian Filtering Technique (GFT) [23].

2. Problem’s definition

The objective of this work is to present and validate a procedure
to estimate the local convective heat transfer coefficient on the
internal side of a pipe’s cross section, in a forced convection prob-
lem. The problem under test is schematized in Fig. 1 where the
cross section of the pipe is shown together with the adopted coor-
dinate system: the fluid flows internally, while the external pipe’s
wall is exposed to a uniform temperature environment Tenv and a
uniform heat generation qg is considered within the solid wall.
The test section is modeled as a 2D solid domain since the temper-
ature gradient along the tube’s axis is assumed to be negligible
with respect to the one along the angular direction. The circular
section presents an internal radius rint, an external radius rext and
the wall is characterized by a thermal conductivity k.

2.1. Analytical model

Under the conditions above described, the local steady state
energy balance equation in the solid domain is expressed as
follows:

Nomenclature

Symbol Quantity (SI Unit)
Eh global relative estimation error on the heat transfer

coefficient hint, Eq. (45)
Eh global relative error on the relative reconstructed tem-

perature hex, Eq. (32)
F Quadrupole matrix, Eq. (37)
G Quadrupole matrix, Eq. (30)
h convective heat-transfer coefficient (W/m2 K)
H Quadrupole external transfer matrix, Eq. (16)
k wall thermal conductivity (W/m K)
M Quadrupole wall transfer matrix, Eqs. (14) and (24)
Na number of measurements
Nh number of harmonics
q convective heat flux (W/m2)
qg internal heat generation per unit volume (W/m3)
r radial coordinate (m)
Re Reynolds number
S surface
t truncation parameter
T temperature (K)
R Quadrupole matrix Eq. (35)

Renv overall heat-transfer resistance between the external
tube wall and the surrounding environment (m2 K/W)

y temperature, Eq. (38) (K)
X,Y Quadrupole heat generation terms, Eqs. (26) and (27)
a angular coordinate (rad)
dn0 Kronecker’s symbol
h relative temperature (K)
u radial heat flux, Eq. (5) (W/m2)
W noisy temperature (K)
X root mean square residual, Eq. (43) (K)

Subscripts, superscripts
b bulk
env environment
ext external
int internal
meas affected by error
mo model
T transpose of a matrix
� Fourier transform

L. Cattani et al. / International Journal of Heat and Mass Transfer 91 (2015) 1034–1045 1035



Download English Version:

https://daneshyari.com/en/article/7056497

Download Persian Version:

https://daneshyari.com/article/7056497

Daneshyari.com

https://daneshyari.com/en/article/7056497
https://daneshyari.com/article/7056497
https://daneshyari.com

