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a b s t r a c t

The subject of this paper was to develop a mathematical model of a non-contacting face seal describing
the phenomenon of the heat transfer in the system: sealing rings – fluid film. The function of
non-contacting face seals used in rotor machines is to separate the working agent from the external
environment. The nature of operation of non-contacting face seals allows the fluid to leak through the
clearance not bigger than a few micrometres. During the operation of the rotor machine between
the co-operating rings, an intense conversion of mechanical energy into heat occurs. At first, the heat flux
generated in the fluid film is channelled to the sealing rings and then to the surrounding fluid.

The solution of the presented model was conducted with the use of analytical methods for the direct
and the inverse heat transfer problem. The distribution of the temperature fields in the sealing rings
for the direct heat transfer problem was determined with the use of Fourier–Bessel series as the surface
function of two variables ðr; hÞ for the cross-section of a ring. The inverse heat transfer problem was
solved with the use of Trefftz functions.

The presented computational methods allow a more detailed identification of the phenomenon of the
heat transfer in non-contacting face seals and indicate a direction of further research and preparation of
new computational methods.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Determining the temperature distribution in the lubricating
fluid and in the structural elements (seal rings) is of great practical
importance due to the limitation of failures caused by significant
increase of temperature and evaporation of agent as well as the
thermo-elastic deformities which are the consequence of the
occurrence of large temperature gradients. Formulating models
which allow possibly the most precise reproduction of the occur-
ring physical phenomena, i.e. heat transfer, thermal deformations
and changes of physiochemical features of the fluid passing
through the radial clearance is extremely significant already at
the stage of designing the devices in which non-contacting face
seals are applied.

The issue of the heat transfer in non-contacting mechanical
seals was the subject of a number of academic papers whose
results have been published in recent years. For instance,
Dumbrava and Morariu [1] presented the thermohydrodynamic

(THD) analysis for the mechanical face seal in which they consid-
ered the changes of the physical features of the agent and the heat
conductivity to the rings limiting the clearance, as well as the heat
transfer as convection with the fluid surrounding the rings. Lebeck
[2] in his book summarized various heat transfer mechanisms in
mechanical seals. Pascovici and Etsion [3,4] presented the method
of determining the heat flow in the area of sealing rings and the
THD analysis for a double seal in the ‘‘face to face’’ configuration.
As a result of an analytical solution, they obtained a radial temper-
ature distribution in the fluid film and in the rotating ring (rotor)
assuming that the surface of the second ring (stator) is insulated
and all the heat generated in the film is channelled through the
rotor to the surrounding fluid. Subsequent thermohydrodynamic
(THD)} [5–7] and thermoelastohydrodynamic (TEHD) [8] models
of a non-contacting face seal can be found for instance in the paper
of Tournerie et al. [9] where basic equations of THD lubrication and
the equations of heat conductivity were presented.

In this paper the problem of the heat transfer in a
non-contacting face seal was solved with the use of two methods.
The first analytical method consisted in separating the variables in
a partial differential equation which described the heat transfer in
a cylindrical system. As a consequence, ordinary differential
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equations were obtained whose solutions are presented in the
form of Bessel series. Such results may be obtained if relevant
boundary conditions are known. In the case when the equation
governing the process and the boundary conditions are known it
is a direct problem. The inverse problem may be classified into
the following categories:

� a boundary inverse problem,
� a coefficient problem,
� an identification of sources,
� a geometric inverse problem,
� an identification of an initial condition.

In the paper the boundary inverse heat conduction problem was
solved. In this problem one of the boundary conditions is not
known. Such a situation occurs for example when on one boundary
of the area, the temperature measurement is not possible and thus,
it is impossible to determine the heat flux. That is why in this paper
another method of specifying the temperature of the field was sug-
gested which allows both direct and inverse heat transfer to be
solved. The method is based on Trefftz functions for the differential
equation under consideration. The method is presently quite well
recognised for a wide range of linear partial differential equations
in various systems of coordinates. For a given differential equation,
a complete set of functions, which strictly fulfil that equation
(Trefftz functions) is determined and the solution is approximated
with the linear combination of Trefftz functions. The coefficients of
the linear combination are determined in such a way so that the
boundary conditions would be fulfilled in the best way (usually
in the method of least squares). Trefftz method was first described
in the paper of [10]. Then, many authors developed that method.
Herrera, Jirousek, Kupradze, Leon, Sabina, Zieliński and
Zienkiewicz should be mentioned herein [11–15]. In the papers
mentioned above, stationary problems or problems brought to be
stationary through time discretisation are considered.
Rosenbloom and Widder in the paper of [16] obtained Trefftz func-
tions for 1D non-stationary heat conduction equation, in which
‘time’ occurred as one of the variables. A number of papers have
been published in this trend. In the papers of [17–21] Trefftz func-
tions were applied to the solutions of problems of linear direct and
inverse heat conductivity in various systems of coordinates. The
nonlinear issue of heat conductivity was solved in the paper of
[22]. Trefftz functions for the wave equation were presented in
the papers of [23–26]. Direct and inverse problems of theroelastic-
ity were solved with the use of Trefftz functions in the papers of

[27–29]. Trefftz functions related to the problem of beam vibra-
tions were described in [30,31], while to plate vibrations in the
papers of [31,32]. Several monographs were written on Trefftz
functions which among others include [20,33–35]. Experiences of
authors of the above mentioned papers show high effectiveness
of Trefftz method in solving the boundary inverse problems
described by differential equations.

The use of Trefftz functions in this paper and the results
obtained with that method allow to determine the temperature
distributions in the sealing rings. The results have been compared
with the results obtained on the basis of the solution of the direct
heat transfer under specified geometrical and operating parame-
ters of a non-contacting face seal (type FMR).

2. Seal model

The main structural concept related to non-contacting face seals
is to maintain a clearance separating the co-operating rings at the
level of a few micrometres during operation. The nominal height of
the clearance hi results directly from the balance of forces affecting
the sealing rings, mainly the pressure force coming from the
elastic element and the hydrostatic force which depends on the
distribution of the pressure generated in the clearance between
the parallel rings. An overall scheme of a non-contacting face seal
was shown in Fig. 1. This type of seal consists (as already men-
tioned) of two cooperating rings – one of them, the stator (1) which
is rigidly mounted in the housing, while the rotor (2) rotates
together with the shaft (6) of the rotor machine and is pressed to
the stator with a spring (3).

Nomenclature

C1; C2; C3; C4 constants
cs

n unknown coefficient of the linear combination
h clearance geometry in the direction of the radial coordi-

nate r
ho nominal clearance height
hðrÞ function of clearance height
J0ðs rÞ; Y0ðs rÞ Bessel functions of the first and second kinds,

respectively
n direction normal to the surface
ri; ro inner, outer radius, respectively
sn constant 1

m

� �
T absolute temperature
T f fluid temperature in the ðr; zÞ coordinates
Tm average temperature of the fluid in the clearance
To temperature of the surrounding fluid (generally as-

sumed to be a constant)

Vn Trefftz functions satisfying Laplace equation
Greek
a convection coefficient
b taper angle
k f fluid thermal conductivity
ki � ks; kr thermal conductivity for the stator and the rotor,

respectively
lo dynamic viscosity at To

m/ distribution of the flow velocity of the fluid in the clear-
ance

x angular velocity
hðr; zÞ ¼ T � To change in the temperature in the ðr; zÞ coordi-

nates
hi � hs; hr changes in the temperature of the stator and the rotor,

respectively

Fig. 1. The scheme of a non-contacting seal. 1 – stator, 2 – rotor, 3 – spring, 4 –
housing, 5 – O-ring, 6 – shaft, 7 – locator.
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