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a b s t r a c t

Conduction of heat between two solids is frequently restricted by surface roughness to flow through
microscopic areas of contact. The contact areas can be of any shape, but some idea of their effect can
be gained by idealising them as isolated circular areas. Then for conduction between two large, uniform
bodies through a contact of radius a there is a ‘constriction resistance’ due to the concentration of the
flow lines equal to 1/2aK where K is the thermal conductivity. This paper investigates how the constric-
tion resistance is modified by a plated coating of different thermal conductivity. The method of finding an
upper bound to the resistance by using an arbitrary distribution of heat flux across the contact and

calculating and minimising the integral H ¼
Z

V
fjqj2=KgdV (well-known for use in electrical flow

problems) is established, and it is shown that this is a highly efficient method of solving the problem,
producing answers which while being upper bounds are also highly accurate values, and the method
can be strongly recommended for use in other problems. The results for all values of the ratio of spot size
to plating thickness a/d and of the thermal conductivity ratio j � Ka/Kb are presented in a plot of
‘‘universal plating factors’’.

The idea that the heat flux through the contact is simply a combination of the distribution without the

coating q / 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2
p� �

and a uniform flux, although it leads to acceptable values for the constriction

resistance, seems not to represent the real physical picture.
� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The flow of heat, or electric current, between two solids is fre-
quently restricted to the small microscopic contact areas caused
by surface roughness; and while these can be of any shape, some
idea of their effect may be gained by treating them as isolated
circular contacts on the surface of planar half-spaces. For two half-
spaces of the same, uniform, material the effect is well-known:
there is a ‘constriction resistance’ due to the concentration of the
flow lines equal to 1/2aK where K is the thermal conductivity and
a the contact radius (or q/2a, where q � 1/r is the electrical resis-
tivity). Even when the two bodies have different, but still uniform,
properties, the same distribution of flow over the contact (as

q ¼ Q=ð2pa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2
p

Þ), taken as input to each body separately, gives
a uniform temperature over the contact, so that this is the exact
solution for the pair, and the combined constriction resistance is
exactly 1/4aK1 + 1/4aK2. [From this point, the terminology will be
thermal: but the mathematical potential problems are identical,
and for the electrical problem it is merely necessary to translate
‘heat flow’ as ‘current’, ‘temperature’ as ‘potential’, and replace
1/K by q.]

In practice the two bodies in contact are often not uniform, but
are protected by a surface layer of different conductivity. (We
ignore the very real possibility that the plated layer may not have
uniform conductivity). Here, the resistance of a single such plated
conductor is examined (Fig. 1).

We give an approximate solution, based on the principle that if
the integral

H ¼
Z

V
fjqj2=KgdV

where q = Kgradh is calculated for an arbitrary distribution of heat
flux over the contact area, this will provide an upper bound to
Q2R (see Appendix A for proof).

This is well-known in electrical theory, where it is simply a
statement of the principle that the true current distribution min-
imises the Joule heat production

R
V q|J|2dV in the body. Thus,

instead of solving the exact problem where the contact is an
isothermal, we find an exact solution but for an arbitrary distribu-
tion of heat flux over the contact, and so obtain an upper bound to
the real problem. Of course we then vary the arbitrary heat flux,
and take the minimum value of H/Q2 as the resistance.
Experience suggests that besides being an upper bound, this is usu-
ally a rather good estimate of the resistance.
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Specifically, to find the resistance for the plated body, we use a
linear combination of arbitrary distributions of heat flux over the
circular contact area, but then optimise the coefficients to
minimise the volume integral. Fortunately it is not necessary to
actually find the temperature or heat flux throughout the body:
the volume integral can be converted into a surface integral by
Gauss’ theorem:
Z

qðrÞj2=K dV �
Z

qðrÞ:gradhdV ¼
Z

divðhqðrÞÞdV ¼
Z

hqðrÞ:dS:

Thus only the surface heat flux (chosen) and surface tempera-
tures (calculated) are needed. For a heat flux entering over a given
area (‘‘the contact’’) and leaving at zero temperature at ‘‘infinity’’,
all that need be found is the temperature distribution over the
contact. Then for a linear combination of heat fluxes q(r) =
aq1(r) + bq2(r) + cq3(r) + ... giving rise to a temperature over the
contact of h(r) = ah1(r) + bh2(r) + ch3(r) + ..., the integral H will equal
Z
ðaq1þbq2þcq3þ . . .Þðah1þbh2þch3þ . . .ÞdS¼a2R11þ2abR12þ . . .

where Rij =
R

qihjdS and we have used the fact that
R

qihjdS =
R

qjhidS.
[We shall refer to such quantities as ‘‘Resistance coefficients.] The
quadratic form is minimised, subject to the condition that the total
heat flux is fixed: for this it is convenient to use Lagrange’s method
of undetermined multipliers.

For the simple case of the combination of two arbitrary input
heat flux distributions (qa, qb) the minimisation is elementary,
and leads to the simple equation [6]:

Rmin ¼
ðRaaRbb � R2

abÞ
Raa þ Rbb � 2Rab

� Raa �
ðRaa � RabÞ2

Raa þ Rbb � 2Rab
:

It should again be emphasised that we never actually find the
distribution of heat flux or temperature throughout the body: only
the values over the circular contact area are needed to obtainR a

r¼0 2phqrdr. The ‘‘averaging’’ of the temperature over the contactR a
r¼0 hðrÞ½rq�dr may also be done analytically, greatly reducing the

amount of numerical integration necessary since the individual
temperatures are never needed.

An alternative method of estimating the resistance is to find the
mean temperature over the contact due to an imposed heat input
distribution, as noted by Carslaw and Jaeger [2]. This will certainly
give a reasonable estimate: but how good is not clear. Negus et al.

[8] improve on this in a solution of the present problem. They
determine the temperature distributions due to two input fluxes
q � (1�r2/a2)�1/2 and q uniform, (which we shall denote as qa
and qb) and find the combination with the minimum variation over
the contact: the corresponding combination of the two mean tem-
peratures is then taken as the resistance estimate. Initially these
same two heat flux distributions were used here, and then since
qb is uniform, the two means used by Negus et al. will be our Rab

and Rbb. It is satisfactory to report almost perfect agreement
between our values of these and their values, despite the different
procedures used for finding them: Negus et al. do not find the
equivalent of our Raa (a weighted mean). But because it proves to
be easier to calculate the mean (even weighted) than even a single
individual value, the present method requires considerably less
calculation: and has the merit of producing a definite upper bound.
The direct use of a mean temperature may well give a better esti-
mate; but all that is then certain is that both the exact answer and,
of course, the mean, lie in the range between the least and greatest
values of the temperature.

2. General solution

We consider a body z P 0, 0 6 r <1with a plating of thickness
d of conductivity Ka, on a substrate with conductivity Kb. The

Nomenclature

a contact radius
d plating thickness
f ðkÞ Hankel transform of flux q(r)
jnðtÞ

ffiffiffiffiffiffiffiffiffiffi
p=2

p
Jnþ1=2ðtÞ=t1=2 (spherical Bessel function)

m ¼ ðj� 1Þ=ðjþ 1Þ or dummy elliptic integral parameter
q heat flux over contact
qp = ð1� r2=a2Þp

ðr; zÞ co-ordinate system
CmðtÞ ¼ 2mm! JmðtÞ=tm (reduced Bessel function)
B(m) complete elliptic integral mBðmÞ � EðmÞ � ð1�mÞKðmÞ
E(m) complete elliptic integral

GðkdÞ ¼ expð2k dÞþm
expð2k dÞ�m

H
R
ðjqj2=KÞ dV Quantity to be minimised. Corresponds to

Joule heat
R
ðqjJj2ÞdV

JmðtÞ Bessel function of order m
K(m) complete elliptic integral

K thermal conductivity
Ka thermal conductivity of plate
Kb thermal conductivity of substrate
Q total heat flow through contact
Rab Resistance coefficient with input qa and temperature hb.
Rpn resistance coefficient

R a
0 qpðrÞhnðrÞ2pr dr

R0
pn resistance coefficient if conductivity uniform.

DRpn addition due to conductivity discontinuity
Rsub resistance for a body of substrate conductivity
Rpl resistance for a body of plate conductivity
U universal plating factorðR� RsubÞ=ðRpl � RsubÞ
a; b generic subscripts: later, Boussinesq and uniform heat

flux
j =Ka=Kb (plate conductivity)/(substrate conductivity)
h temperature
hn temperature resulting from heat flux qn
1ðnÞ Riemann zeta function (NBS Table 23.3)
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Fig. 1. Flux lines as heat enters a half-space through a circular contact area. [The
flux lines will be kinked where the conductivity changes between plating and
substrate].
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