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a b s t r a c t

Achieving correct tempering in thin glass is very important to prevent undesired stress and breakage.
Computer simulation can elucidate and control the tempering process. For semitransparent materials like
glass, heat transfer by thermal radiation is substantial; for thick glass, it may dominate over convection
and conduction. The present paper investigates the tempering of thin glass. A circular glass disk sup-
ported by a metallic mold cools down by natural convection. The process can be modeled mathematically
by coupling the heat and radiative transfer equation in the glass disk with the heat transfer in the support
mold. Even at the glass and support mold interface, radiation exchange must be considered. Mechanical
behavior is modeled using the mechanical equilibrium and applying the constitutive law for glass during
cooling. For the numerical radiation simulation, the Abaqus� commercial software package was com-
bined with an in-house C code. Based on the differences in temperatures and stresses between simula-
tions that only take surface radiation into account and those that consider surface as well as internal
radiation, it has been shown that, even for thin glass, internal radiation cannot be ignored.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Proper glass cooling is very important to achieve desired pro-
duct quality. If cooling does not occur properly, undesired stresses
may occur inside the glass, which could lead to glass breakage
either during the cooling itself or during subsequent product
manipulations. Numerical simulations can be used to study the
physical behavior of glass (temperature, stresses) during cooling
to improve cooling process design. Modeling glass cooling is a
complex, non-linear thermo-mechanical problem. In the last dec-
ades, glass-cooling models have been widely developed [1–4]
using commercial software packages or homemade codes.

Glass is a semi-transparent material. Consequently, in addition
to heat conduction and heat convection, radiation plays an impor-
tant role in thermal exchanges, especially at high temperatures
where it is the dominant heat transfer process. Thorough assess-
ments of radiative heat transfer can be found in [5–7], while the

application of radiative heat transfer to the glass industry is
assessed in [8,9].

In the literature, different solutions were proposed to model
glass cooling and account for radiation effects. The simplest one
is to completely ignore radiation [4,10]. Another solution is to con-
sider surface radiation only by applying Stefan–Boltzmann’s law
[11], which is appropriate for opaque materials like metals.
However, since glass is a semi-transparent material, internal radi-
ation cannot be ignored. A widely used solution involves treating
radiation as a correction of heat conduction by using an equivalent
conductivity (such as the active thermal conductivity method
[12,13]) or the Rosseland approximation [14]. These methods are
fast and simple to integrate into commercial software packages.
Originally derived by Rosseland in 1924 for stellar radiation [15],
the Rosseland approximation is only valid, however, for optically
thick glass, i.e. d � jðkÞ � 1; where jðkÞ denotes the wavelength
depending absorption coefficient and d the distance to the bound-
ary. In [3,16] it was shown that the use of the Rosseland approxi-
mation for glass cooling could lead to significant stress
calculation error.

The right way to model thermal radiation is to use the radiative
transfer equation (RTE):
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X � rIðx;X; k; tÞ þ jðkÞIðx;X; k; tÞ ¼ jðkÞBðTðx; tÞ; kÞ:

This equation is non-linear and high-dimensional regarding the
spectral radiative intensity Ið�x;X; k; tÞ, and therefore very time con-
suming to solve. Lee and Viskanta [17] used the Discrete Ordinate
Method (DOM) in axisymmetric cylindrical coordinates to solve
this equation in the case of the cooling of an optical-quality glass
disk by natural cooling. These researchers suggested surrounding
the disk with air at a constant temperature. To validate the solution
method, they modified the boundary condition to obtain a
one-dimensional solution from the two-dimensional formulation
and compared it with experimental data from Field and Viskanta
[18]. The difference between the simulated temperature and the
experimental data is quite small.

As an alternative to the time consuming DOM a fast and suffi-
ciently accurate method based on the formal solution of the radia-
tive transfer equation was developed in [3]. This method is used
here to simulate the cooling of a glass disk supported on its edge
by a metal support mold. Due to the contact between glass and
metal, a boundary condition that describes the exchange of radia-
tive energy not only in the opaque wavelength region but also in
the semitransparent region must be taken into account. The
selected numerical solution method [3] must be modified to incor-
porate this kind of boundary condition.

The paper is organized as follows. In Section 2, the axisymmet-
ric model considered in this paper is defined. The geometries of the
disk and the mold, the mechanical and thermal equations and the
radiative heat transfer model are discussed. To validate this model,
the selected numerical solution is compared with values from
[17,18] in a specific one-dimensional solution. It turns out that
the proposed numerical method for radiative transfer is very close
to the experimental data. In Section 3, the method described in
Section 2 is applied to the axisymmetric problem of the cooling
of the glass disk supported on a metal mold. The results obtained
in terms of temperatures and stresses will be discussed. It will be
shown that considering internal radiation is very important for
simulating glass cooling.

2. Definition of the two-dimensional glass-cooling model

2.1. The geometric model for glass cooling

This paper examines the cooling of a circular disk supported on
its edge by a metal mold as described in Fig. 1. The glass domain is
defined by D g ¼ f0 6 r 6 R;0 6 z 6 eg:

The mold domain is defined by Dm ¼ fR1 6 r 6 R2;�E 6 z 6 0g:
Since cooling occurs between time 0 and time tmax,
D g

t ¼ D g � f0 6 t 6 tmaxg and Dm
t ¼ Dm � f0 6 t 6 tmaxg, respec-

tively denote the domains occupied by the glass and the mold over
the time. The boundaries of these two domains are denoted by @D g

t

and @Dm
t respectively. The contact area between the glass and the

mold is denoted by @Dgm
t .

In the present modeling study, it is assumed that:

A1: At the bottom of the mold, there is no displacement in the
z-direction:

uzð�r; tÞ ¼ 0; ð�r; tÞ 2 @Dm
t ; z ¼ �E:

A2: The mold is considered as a thermoelastic body that dilates
when heated.

A3: At time t ¼ 0 s, when tempering begins, temperatures in the
glass and in the mold are homogeneous.

A4: For time t > 0 s, the glass and the mold are cooled by air and
the cooling is uniform throughout the glass disk and mold
surfaces. Even the bottom of the mold
(z ¼ �E; R1 6 r 6 R2Þ undergoes cooling.

A5: Mechanically, sliding contact is considered at the interface
between the glass and the mold. Thermally, in the contact
zone, in addition to accounting for radiative transfer, heat
exchange by conduction is considered and modeled by a
constant heat transfer.

A6: Gravity is not considered as only the residual stresses field is
studied and not on the final shape. In fact, the bending stres-
ses due to gravity are very small and have a negligible
impact on the residual stresses.

2.2. Mathematical model for the mechanical behavior

Since the problem is axisymmetric, a cylindrical coordinate sys-
tem ðr; h; zÞ is used. The problem does not depend on h and there is
no tangential displacement. The displacement vector in the glass
and in the mold is:

�uð�r; tÞ ¼
urð�r; tÞ

0
uzð�r; tÞ

8><
>:

9>=
>;: ð1Þ

In the tempering operation, displacements are very small and
the linearized strain tensor can be used. Its components are:

errð�r; tÞ ¼
@ur

@r
ð�r; tÞ; ehhð�r; tÞ ¼

urð�r; tÞ
r

; ezzð�r; tÞ ¼
@uz

@z
ð�r; tÞ;

erzð�r; tÞ ¼
1
2

@ur

@z
ð�r; tÞ þ @uz

@r
ð�r; tÞ

� �
; ehzð�r; tÞ ¼ 0; erhð�r; tÞ ¼ 0: ð2Þ

In absence of gravity and inertial forces, mechanical equilibrium
is:

r�r � rð�r; tÞ ¼ �0; ð�r; tÞ 2 D g
t ; ð3Þ

where r is the Cauchy stress tensor and r�r the divergence operator
in cylindrical coordinates. For an axisymmetric problem, it reduces
to:

@rrr
@r ð�r; tÞ þ

rrrð�r;tÞ�rhhð�r;tÞ
r þ @rrz

@z ð�r; tÞ ¼ 0;
@rrz
@r ð�r; tÞ þ

rrzð�r;tÞ
r þ @rzz

@z ð�r; tÞ ¼ 0:

(
ð�r; tÞ 2 D g

t ; ð4Þ

Time is not explicitly present in Eq. (4), but will come into play
through the temperature dependence of the material properties
and thermal dilatation.

The boundary conditions are the following:

� Due to the axisymmetry, the radial displacement vanishes on
axis r ¼ 0:

urð�r; tÞ ¼ 0; ð�r; tÞ 2 @D g
t ; r ¼ 0: ð5Þ

� Due to the presence of the mold, there is a unilateral contact
condition on boundary @Dgm

t . The displacements of both bodies
must satisfy the Signorini condition stating that the bodies can-
not interpenetrate and that a contact force only exists when the
distance between both bodies vanishes [19].
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Fig. 1. Axisymmetric model of the circular glass disk supported on its edge by the
metal mold.
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