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a b s t r a c t

In this study, steady laminar forced convection slip flow in a microtube subjected to an axially varying
heat flux is investigated numerically using the finite volume method. The classical Graetz problem is con-
sidered, which can be named as micro-Graetz problem for the microscale condition. The viscous dissipa-
tion effect is included in the analysis. The problem studied can be also named as micro-Graetz–Brinkman
problem. The slip flow regime is considered by incorporating the velocity slip and temperature jump con-
ditions at wall. The effects of rarefaction, the viscous dissipation and the dimensionless amplitude of the
axially varying or periodic heat flux on the local and mean Nusselt numbers as well as on the wall and
bulk temperatures are obtained for some specific ranges of corresponding parameters. These effects
are found to be interactive. It is disclosed that the mean Nusselt number decreases with an increase in
the amplitude.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Rapid progress in microfabrication techniques and wide appli-
cation areas of microdevices have triggered research interest in
heat and fluid flow at microscale. For proper design and reliable
operations of these devices, ongoing research interest is very crit-
ical and valuable.

The Knudsen number (Kn), the ratio of the gas mean free-path
to the characteristic length of the channel, determines the degree
of rarefaction and the validity of the continuum approach. For very
small values of Kn, the continuum approach is valid. As Kn
increases, the mean free path of the gas becomes comparable to
the characteristic length of the channel, rarefaction effects become
more important and eventually the continuum approach breaks
down. It is basically a criterion to classify flow regime of gases.
The range of 0.001 6 Kn 6 0.1 represents the slightly rarefied slip
flow regime where the fluid velocity at the wall is not zero and,
wall temperature and adjacent fluid temperature are not the same.
Slip flow regime is encountered in a wide variety of applications.
When analyzing this regime, the Navier–Stokes equations remain
valid provided that tangential slip velocity and temperature jump
conditions are implemented at the walls.

Colin [1] recently presented an excellent review of investiga-
tions on slip flow heat transfer in microchannels, focusing on the
Nusselt number dependence on rarefaction (Knudsen number),
viscous dissipation (Brinkman number) and axial conduction
(Peclet number). For various combinations of hydrodynamic and
thermal boundary conditions in various micro-geometries, a con-
siderable amount of studies have appeared in the literature [2–
26]. Effects of rarefaction on the heat transfer have been well doc-
umented. Some studies have also included effect of viscous
dissipation.

Almost all studies on slip flow forced convection in microducts
assume constant or uniform heat flux/temperature at wall.
However, axially varying thermal boundary conditions at wall
are sometimes encountered in practice. Electronics cooling related
to periodic micro-electronic heaters/chips, cooling of microreac-
tors, control or enhancement of heat transfer at microscale level
and micro-processor chip cooling could be some examples. As a
representative one, we note microreactors where axial variation
of heat flux, nearly in a sinusoidal manner, exits. For the macro-
scale case, there are some studies on forced convection in ducts
with axially varying thermal boundary conditions [27–38].

To the authors’ best knowledge, there is no study on convective
heat transfer in microchannels subjected to axially varying heat
flux. This article aims at investigating slip flow regime of rarefied
gas in a microtube with an axially varying heat flux, taking the
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effects of velocity slip and temperature jump at the gas–solid inter-
face and viscous dissipation into consideration.

2. Problem description and analysis

Hydrodynamically developed but thermally developing laminar
gas flow in a microtube subjected to a sinusoidal heat flux bound-
ary condition is considered (Fig. 1). Thermophysical properties of
the fluid are assumed to be constant.

In the analysis, the usual continuum approach is coupled with
the two main characteristics of the microscale phenomena: the
velocity slip and the temperature jump. The velocity slip is given
by [5]
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where k (Kn D) is the molecular mean free path and F is the tangen-
tial momentum accommodation coefficient which has a value near
unity for most engineering surfaces [5]. The temperature jump at
the wall is given by a similar expression
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where Ts and Tw are the temperature of the gas at the wall and the
wall temperature, respectively. The term Ft represents the thermal

accommodation coefficient which depends on the gas and the sur-
face material. Particularly for air, it assumes typical values near
unity [5]. For the rest of the analysis, F and Ft will be assumed to
be 1.

The fully developed velocity profile taking the slip flow condi-
tion at the wall into consideration is given as [10]:

u ¼ 2umð1� ðr=roÞ2 þ 4KnÞ
ð1þ 8KnÞ ð3Þ

where um and Kn are the mean velocity the Knudsen number,
respectively.

Under the assumption of local thermal equilibrium, the
steady-state energy equation with constant fluid properties is
expressed as
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Here, the third term in the right hand side of the equation is the
energy generation due to viscous dissipation. The sinusoidal heat
flux boundary condition along the tube wall is given by

q00wðzÞ ¼ q00oð1þ A sinð4pz=LÞÞ ð5Þ

where A is the dimensionless heat flux amplitude defined as:

A ¼ jq
00
wðzÞjmax

q00o
� 1 ð6Þ

The regarding boundary conditions for the energy equation are
as follows:

z ¼ �L; 0 6 r 6 ro; T ¼ Te ð7aÞ

z ¼ L; 0 6 r 6 ro; @T=@z ¼ 0 ð7bÞ

r ¼ 0; �L 6 z 6 L; @T=@r ¼ 0 ð7cÞ

r ¼ ro; �L 6 z < 0; @T=@r ¼ 0
r ¼ ro; 0 6 z 6 L; @T=@r ¼ q00wðzÞ=k

ð7dÞ

Nomenclature

A dimensionless heat flux amplitude, Eq. (6)
Br Brinkman number, Eq. (10)
D diameter of the microtube [m]
F tangential momentum accommodation coefficient
Ft thermal accommodation coefficient
k thermal conductivity [W/mK]
Kn Knudsen number
L length of the microtube [m]
L⁄ dimensionless length of the microtube
Nu Nusselt number
Nu Nu mean Nusselt number
Pr Prandtl number
q00o mean value of the wall heat flux along the microtube

[W/m2]
q00w wall heat flux [W/m2]
r radial coordinate [m]
R dimensionless radial coordinate
Re Reynolds number
r0 radius of the pipe [m]
Pe Peclet number
Pr Prandtl number
T temperature [K]
u velocity [m/s]

z axial coordinate [m]
Z dimensionless axial coordinate
�Z dimensionless axial coordinate

Greek symbols
a thermal diffusivity [m2/s]
c specific heat ratio
k molecular mean free path
l dynamic viscosity [Pa s]
q density [kg/m3]
t kinematic viscosity [m2/s]
h dimensionless temperature, Eq. (8)
hb dimensionless bulk fluid temperature, Eq. (16)
hs dimensionless fluid temperature at the wall, Eq. (14)
hs�w dimensionless temperature jump between the fluid and

wall, Eq. (14)
hw dimensionless wall temperature, Eq. (15)

Subscripts
s fluid properties at the wall
w wall

Fig. 1. Schematic of the problem.
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