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In this work, the study of fluid flow and heat transfer characteristics of a magnetohydrodynamic (MHD)
fluid over a stretching plate in steady state in the presence of magnetic field is conducted. The viscosity of
the fluid is assumed to vary as a linear function of temperature given by the following relation:
1= wla+b(Ty —T)]. For the research of fluid flow and heat transfer in boundary layers, one usual

way to treat the governing partial differential equations (PDEs) is to transform the PDEs into ordinary
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differential equations (ODEs). While, in the present work, the governing PDEs are kept their originals
and only transformed into dimensionless forms. After that, the equations are solved directly by
Chebyshev collocation spectral method (CSM) and the effects of more factors on heat transfer and fluid
flow can be investigated. Effects of the variable viscosity parameter b, the Hartmann number Ha, and

MHD the Prandtl number Pr on the fluid flow and heat transfer characteristics are investigated.

Variable viscosity
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1. Introduction

The study of boundary flow and heat transfer has received con-
siderable attentions because of its increasing industrial applica-
tions and important bearings on several technological processes,
such as the manufacture, the drawing of plastics and rubber sheets,
the metal and polymer extrusion processes, the glass-fiber, the
paper production, and the cooling of metallic sheets in a cooling
bath, etc. Blasius [1] firstly investigated the boundary layer flow
on a flat plate and employed a similarity transformation in 1908.
Different from Blasius, Sakiadis [2,3] considered the boundary
layer flow on a moving flat plate in a quiescent fluid and obtained
numerical solution of the problem. In 1989, Chappidi and
Gunnerson [4] pointed out that there are two sets of boundary
value problems formulated by the boundary conditions of
U, >U, and U, > U,. Later, Afzal et al. [5] combined the
Blasius (U, = 0) and the Sakiadis (U, = 0) problems successfully
and obtained a single set of equations. Pohlhausen [6] extended
the work of Blasius [1] to account for heat transfer on a flat plate.
Thereafter, the problem of flow and heat transfer over a stretching

* Corresponding author. Tel.: +86 13664102228.
E-mail addresses: heatli@dlut.edu.cn, heatli@hotmail.com (B.-W. Li).

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.05.102
0017-9310/© 2015 Elsevier Ltd. All rights reserved.

surface has been investigated and discussed by many researchers
[7-10].

As for an electrically conducting fluid, the imposed magnetic
field may play an important role on controlling momentum and
heat transfers in the boundary layer MHD flow over a stretching
sheet [11,12]. The applied magnetic field can make the streamlines
steeper and the boundary layer thinner significantly [13].
Thereafter, the study of the MHD boundary layer flow over a
stretching sheet has been carried out by many researchers
[14-19]. Moreover, the study of the flow and heat transfer charac-
teristics of electrically conducting fluids has attracted considerable
interest due to its applications in the process of purification of mol-
ten metals from non-metallic inclusions [20-22]. In most studies
mentioned above, the fluid viscosity was assumed to be uniform
in the flow region. From the physics view, it is known that, with
the rise of temperature, the viscosity coefficient decreases in case
of liquids whereas increases in case of gases. Abel et al. [23] studied
the viscoelastic fluid flow and heat transfer over a stretching sheet
with variable viscosity. Mukhopadhyay [24] investigated a hydro-
magnetic flow over a heated stretching sheet with variable viscos-
ity in the conditions of different Prandtl number and magnetic
parameter.

The governing partial differential equations (PDEs) mentioned
in the above reports are usually converted into nonlinear ordinary
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Nomenclature

Ay matrix defined in Eq. (28)

Ay matrix defined in Eq. (29)

ab fluid viscosity variation parameters

By matrix defined in Eq. (28)

By matrix defined in Eq. (29)

By applied magnetic field, T

Cy matrix defined in Eq. (28)

Cy matrix defined in Eq. (29)

p™ first order derivative matrices

p? second order derivative matrices

Ha Hartmann number

L characteristic length, m

N number of grid points

Pr Prandtl number

S collocation point

T temperature, K

t time, s

U dimensionless velocity component in x-direction
Uy Reference velocity

Vv dimensionless velocity component in y-direction
u velocity component in x-direction, m/s
v velocity component in y-direction, m/s

XY dimensionless Cartesian coordinates
X,y Cartesian coordinates, m
Greek symbols
K thermal diffusivity, m?/s
0 density, kg/m>
v kinematic viscosity, m?/s
u dynamic viscosity, kg/(m s)
o electrical conductivity, 1/(Q-m)
0 dimensionless temperature
Superscripts
time step
Subscripts
w condition at the surface
00 condition in the ambient medium
X,y coordinate axis
i,j grids indexes for x- and y-direction
max maximum value

differential equations (ODEs) using a similarity transformation by
introducing a set of similarity variables [25-27] or picking up the
method of Lie group method [19,28-31]. Instead of adopting sim-
ilarity transformation to simplify the non-linear PDEs into the
ODEs as a sort of the one dimensional analysis, another feasible
way to deal with the original governing equations is to transform
them into a system of non-dimensional differential equations by
introducing the variable transformation. Thus the type of mathe-
matical model of the governing equations remains non-linear par-
tial differential, therefore, researchers can solve them using
different numerical methods or analytical methods. However,
these methods are not prevalent up to now. Sharma solved the
unsteady MHD free convection heat and mass transfer of viscous
fluid flowing through a porous regime adjacent to a moving verti-
cal semi-infinite plate by element free Galerkin method [32].
Nasser [33] solved the PDEs in 2D boundary layer flow and heat
transfer with the help of implicit-Chebyshev pseudospectral
method, Newton method was adopted in their iteration.

In order to reach a grid-independent solution, numerical meth-
ods such as the finite volume method (FVM) or the finite difference
method (FDM) are often used to solve the PDEs with a large num-
ber of nodes. To overcome the drawbacks of the low order meth-
ods, the spectral method can yield higher accuracy for a smooth
solution with far fewer nodes and therefore less computational
time. The collocation spectral method (CSM) is a kind of the spec-
tral method which makes use of Chebyshev polynomials in the
non-periodic directions. The CSM has been widely applied in com-
putational fluid dynamics [34-36], radiative heat transfer [37-39],
and heat transfer problems involving coupled radiation and con-
duction [40].

The main objective of this work is to investigate the effects of
the variable viscosity parameter b, and the Prandtl number Pr on
the boundary layer flow and heat transfer over a semi-infinite flat
plate under the influence of a magnetic field. Different from the
previous studies, the two-dimensional analysis is performed rather
than adopting the similarity transformation as a sort of the
one-dimensional analysis. Moreover, the PDEs are solved directly
by the CSM. Numerical results are discussed for various values of
physical parameters.

2. Problem formulation
2.1. Physical model

The steady laminar, mixed convective flow of an electrically
conducting viscous fluid over a continuous stretching semi-
infinite flat plate (see Fig. 1) is considered. The x axis is in the
direction of the stretching plate, and the y axis is perpendicular
to the plate. The velocity components in the directions of x and y
are u and v respectively. A magnetic field B, is imposed parallel
to the y axis which is normal to the flow direction.

The properties of the fluid are assumed to be constant except for
the dynamic viscosity. Viscous dissipation and Ohmic dissipation
are neglected.

2.2. Governing equations

The boundary layer form of the governing equations can be
written as:

Temperature boundary layer /I\ B

— x
—
Flat plate ty

Flow boundary layer

v

Fig. 1. Physical model and coordinate system.
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