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a b s t r a c t

In this paper we develop a new high-order ghost-cell based Immersed Boundary Method (IBM) for flow
and thermal simulation of multiphase flow system with moving bodies, based on our previous edition
with only stationary boundary treatment. The newly developed approach is validated by comparing with
earlier reported simulation and experimental results of both the pressure drag coefficient of a prescribed
harmonic in-line oscillating sphere and the trajectory, velocity history of a free falling sphere under grav-
ity and the rising of a spherical catalyst particle in an enclosure, using relatively coarse mesh resolution.
Excellent agreement is obtained, demonstrating the accuracy and efficiency of our newly developed
method. Finally, we employ the new method to investigate the cooling process of a freely settling spher-
ical particle under gravity, aiming at revealing the impact of natural convection on particle cooling. It
turns out that the heat transfer and hydrodynamics interaction is the most obvious when the
Richardson number is the largest in our simulations. When the Reynolds number equals, the Nusselt
number is always higher for the no buoyancy case than the case with buoyancy force.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In multiphase flow system, heat transfer between fluid and dis-
persed phase is very common. Under these circumstances, dis-
persed phase usually drift in the fluid while exchanging thermal
energy with it. When it happens, the dispersed phase may break
away from surrounding fluid; intrude into a new place and
exchange heat with fresh fluid there.

Considering particle movement is more realistic than investi-
gating statically arranged particle(s). However, since it is more
complex, difficulties arise. Haeri et al. [1] and Deen et al. [2] sum-
marized direct numerical simulation (DNS) techniques for particu-
late flows with fully resolved particles, such as overset grid
method, Arbitrary Lagrangian–Eulerian (ALE) method, Immersed
Boundary Method (IBM), Distributed Lagrange Multiplier/
Fictitious Domain (DLM/FD) method [3] and Lattice Boltzmann
method.

Among all these currently available methods, IBM has recently
been demonstrated to be a highly versatile and quite attractive
one. It discretizes the equations of motion for the fluid phase on
a fixed Cartesian grid and treats immerse boundary (IB) in a
non-body-conformal manner, which is free from time-consuming
grid generation/re-generation (when IB moves), hence very

efficient in simulating flows around moving/deforming bodies with
complex geometrical shapes.

During its history of development, IBM is mainly used for hand-
ing fluid-particle hydrodynamic interaction. It is only in the last
decade that IBM was introduced into heat transfer simulation.

Feng and Michaelides [4] implemented a well documented
direct-forcing IBM scheme to obtain numerical results with a group
of 56 interacting circular particles that cool while settling. Deen
et al. [5] utilized an IBM method to perform DNS of fluid flow
and heat transfer in dense suspensions, fully resolved simulation
results of both stationary random array of particles and liquid flu-
idized bed were presented. Liao and Lin [6] adopted a so-called
solid-body-forcing strategy to compute flows and heat transfer
with moving objects. Most recently, Feng and Musong [7] applied
IBM to study heat transfer of 225 spheres in a narrow channel flu-
idized bed.

However, specific remedy has to be made to a primitive IBM
before successfully implementing numerical simulation with mov-
ing boundary problems. The primary undesirable property of IBM
turns out to be unphysical, temporal oscillation of the pressure
fields [8], when it is employed to deal with moving bodies. And
these pressure oscillations are observed virtually for all type of
IBMs.

Liao et al. [9] obtained significantly lower amplitude oscillations
via a combination strategy of a ‘‘solid-body-forcing’’ applied at
solid nodes and interpolation at fluid nodes. By first identifying

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.05.098
0017-9310/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +86 571 87951764.
E-mail address: fanjr@zju.edu.cn (J. Fan).

International Journal of Heat and Mass Transfer 89 (2015) 856–865

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2015.05.098&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.05.098
mailto:fanjr@zju.edu.cn
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.05.098
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


the primary cause of these oscillations to be the violation of the
geometric conservation law near the immersed boundary, Seo
and Mittal [10] adopt a cut-cell based approach to strictly enforce
geometric conservation, successfully reducing pressure oscillations
for moving boundary by roughly an order of magnitude.

In an earlier paper, Xia et al. [11] introduced a ghost-cell based
high-order Immersed Boundary Method to investigate forced con-
vection and heat transfer around a cluster of sphere particles. In
the present paper, our previous proposed high-order ghost-cell
based boundary reconstruction technique is further improved
and extended, by retaining the high-order algorithm of our previ-
ous work as well as absorbing the ideology of regionally conserva-
tive cut-cell based method to alleviate the intrinsic pressure
oscillation from Seo and Mittal [10], such that it is capable of han-
dling moving particles stably and efficiently.

The organization of this paper is as follows: first the methodology
of the immersed boundary technique along with numerical solution
methods to be employed is given in Section 2. Section 3 is devoted to
the verification of the method for three dimensional (3D) test cases:
a prescribed harmonic in-line oscillating sphere, a free falling sphere
under gravity and the rising of a spherical catalyst particle in an
enclosure. Then in Section 4 the cooling of a free-settling hot spher-
ical particle with and without buoyancy is simulated, using the
newly developed high-order Immersed Boundary Method. And
finally conclusions are presented in Section 5.

2. Numerical strategy

For constant properties viscous incompressible Newtonian
fluid, the transport phenomena are governed by the conservation
equation for mass, momentum and thermal energy, in dimension-
less form, given by:

r � u� ¼ 0 ð1Þ

@u�

@t
þ u� � ru� ¼ �rP� þ 1

Re
r2u� þ Gr

Re2 T�~eg ð2Þ

@T�

@t
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Pe
r2T� ð3Þ

where u� ¼ ðu;v;wÞ is the dimensionless velocity vector, P* is the
dimensionless pressure. The dimensionless temperature is defined
as T� ¼ ðT � T0Þ=ðTS � T0Þ, T0 is the constant far-field temperature,
Ts is the isothermal particle temperature and T is the dimensional
fluid temperature. The three dimensionless characteristic
numbers in the governing equations are Reynolds number
Re ¼ ðq0 � U � DÞ=l, Peclet number Pe ¼ Re � Pr (with Prandtl number

Pr ¼ ðcP � lÞ=k) and Grashof number Gr ¼ gbðTs � T0Þq2
0D3=l2. Here

take the uniform inflow velocity U as characteristic velocity, particle
diameter D as characteristic length scale. q0, l, b, cP and k are fluid
density, dynamic viscosity, thermal expansion coefficient, heat
capacity and coefficient of thermal conductivity; g is the gravita-
tional acceleration, ~eg is the unit vector in the direction of the
gravitational acceleration.

The pressure-Poisson equation derived by applying the
divergence operator to the momentum equations replaces the
continuity Eq. (1) that is satisfied indirectly through the solution
of the pressure equation. Eqs. (2) and (3) are integrated in time
using a four-stage fourth-order Runge–Kutta method with the
third-order Adams–Bashforth method for convection terms and
Crank-Nicolson method for diffusion terms. More details about
the solution methodologies are available in [11].

For suspended solid particles, their translational and rotational
motion is governed by the Newtonian equations of motion,
respectively, given by:

mp
d~up

dt
¼ mp~g þ~Ff!s ð4Þ

Ip
d~xp

dt
¼~Tf!s ð5Þ

where mp and Ip are the mass and the moment of inertia of the par-
ticle, respectively.

And the f ! s terms represent the drag and torque exert upon
the particle by the fluid. They are calculated from integrating vis-
cous stress and pressure contribution components around the
sphere surface:

~Ff!s ¼
I

S

~f f!sdS ¼
I

S
ðlru �~n� p~nÞdS and ~Tf!s ¼

I
S
ð~r �~rpÞ �~f f!sdS
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where~n is the outward unit normal vector,~r are position vectors to
points at particle surface and~rp is the position vector to the center
of sphere.

Similarly, the particle temperature is governed by:

mpCp;s
dTp

dt
¼ Uf!s with Uf!s ¼ �

I
S
ðk � rT �~nÞdS ð7Þ

where Uf!s is the heat transfer rate from fluid to solid phase.
In order to properly reflect the presence of immersed bodies,

subtle boundary reconstruction technique is introduced into solu-
tion procedure. Mathematically, in the vicinity of the immersed
boundary, a generic variable / can be expressed as the Taylor ser-
ies expansion based on a specifically chosen boundary point
(body-intercept point ððx0; y0; z0ÞjBI ¼ ð0;0;0ÞÞ, with the form of:
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where x0 ¼ x� xBI; y0 ¼ y� yBI; z0 ¼ z� zBI.
To determine the value and derivatives at the body-intercept

point, the above Eq. (8) is approximated by an Nth-order
polynomial:

/ðx0; y0; z0Þ � Uðx0; y0; z0Þ

¼
XN

i¼0

XN

j¼0

XN

k¼0

cijkðx0Þiðy0Þ jðz0Þk iþ jþ k 6 N ð9Þ

Hence, unknowns are the coefficients of the polynomial instead
of derivatives. And these coefficients cijk can be determined by the
least square fitting:

c ¼ ðWVÞþW/ ¼ A/ ð10Þ

where superscript ‘+’ denotes the pseudo-inverse of a matrix. Vector
c and / contain coefficients cijk and data /ðx0m; y0m; z0mÞ respectively,
and W and V are the weight and Vandermonde matrices given by:
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. .
.

wm

2
66664

3
77775; V¼

1 x01 y01 z01 x021 y021 z20
1 � � �

..
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..
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in which the subscript ‘1’ denotes the ghost point, and the other
(M � 1) are fluid points in the vicinity of the body-intercept point,
as described in Fig. 1(a).

Comparing Eqs. (8) and (9), with Eq. (10) in mind, we obtain a
set of equalities as follows:
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