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a b s t r a c t

Transient heat transfer problems typical of recent-day cryosurgery are considered. Relatively simple
models are suggested to take into account different temperatures of freezing inside the biological cells
and in the gaps between the cells. In the most complicated case of interpenetrating media, when there
is a thermal contact between the cells and also between the gaps, the model one-dimensional problem
is formulated and solved with a specific attention to the effects produced by repeated periods of freezing
and thawing. It is shown that the latent heat of melting may lead to a significant difference between tem-
peratures of the cells aggregates typical of tumors and the extracellular medium. It is important that the
temperature inside the cell aggregate alternatively becomes less or greater than the ambient tempera-
ture. Such a temperature regime may lead to serious thermo-mechanical damage of the tumor cells
not only due to ordinary thermal expansion during the freezing but also because of tensile stresses that
arise at the surface of the frozen biological cells or their aggregates. Potential possibility of microwave
monitoring of small local regions of thawing is analyzed on the basis of Mie theory calculations.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Thermal processes accompanying repeating freezing of
two-component disperse systems as applied to behavior of biolog-
ical tissues during cryosurgery are considered in the present paper.
Thermal, mechanical, and biochemical processes in medical appli-
cations with the use alternating freezing and thawing of human
tissues have attracted increasing attention of researches mainly
because of cryogenic therapy and surgery of various tumors of both
superficial tissues and internal organs [1–4]. It is important that
cancer cells seem to be more sensitive to freezing injury than nor-
mal cells [5].

It is known that a strong cooling of living tissues leads first to
freezing the extracellular medium. With further cooling, ice crystals
may be formed within the biological cells. This phenomenon has
been analyzed originally by Mazur [6]. One can find a description
of this analysis in more recent reviews [7,8] (see also [1,2]). It is
interesting that the so-called cell survival curve plotted versus the
cooling rate has a maximum (the best survival) at a certain optimal
rate of cooling. On the contrary, the strongest effect of a tissue

necrosis is reached in the case of relatively low or high cooling rate.
At low cooling rate, time is sufficient for the cell dehydratation,
when water leaves the cell and freezes in a space between the cells.
At high cooling rate, the ice crystals are formed inside the cell. The
growing elongated ice crystals may damage not only organelles sus-
pended in the cytoplasm but, most importantly – the cell membrane.
In the case when the medium inside the cell was not damaged, the
subsequent thawing leads to recovery of the living tissue functions.
As a rule, several cycles of cell freezing and thawing lead to serious
damage and irreversible changes of the biological tissue.

One can distinguish at least two stages of freezing of biological
tissues. At the first stage, the heat loss during the phase change in
the extracellular medium does not lead to any change in tempera-
ture of this medium because of certain time needed to remove the
released significant latent heat. Simultaneously, the temperature
inside the cell goes on to decrease monotonically up to the lower
solidification temperature. Obviously, the local thermal nonequi-
librium between the cell and extracellular medium takes place at
this stage. At the second stage of freezing, there is no liquid phase
in both intercellular and extracellular medium and the local ther-
mal nonequilibrium is insignificant.

The temperature difference between the cell and extracellular
medium is usually small because the single cell size is less than
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several tens of microns [3]. The two basic types of tumors, benign
tumors and malignant tumors, are distinguished by their cell types
and growth patterns. Benign tumors grow as well-defined masses
that push normal cells out of the way rather than invading sur-
rounding tissue; they tend to be restricted to a limited area (local-
ized). A benign tumor may form a capsule of connective tissue
around itself that separates the tumor from adjacent normal cells.
Some cells, especially in the tumors, may agglomerate and the
extracellular medium is displaced into the space between the cell
agglomerates. This effect takes place in the breast tumors, where
the diameter of observed dense agglomerates may be about
160 lm at the ordinary size of the tumor about one centimeter
[9]. It is not a general property of all the benign tumors, but some
dangerous cancers are characterized by a relatively large compact
region of cancerous cells separated from the outside by a mem-
brane [10,11]. Most likely, the above described effect of thermal
nonequilibrium will be considerable in the case of relatively large
agglomerates of the tumor cells. One can also expect that this
effect is more pronounced in the region of relatively slow cooling
and at the periphery of the cooled region.

Naturally, the reliable computational data for the temperature
and phase state of biological tissues can be obtained only with
the use of detailed experimental data for thermal properties of
the tissues in a wide temperature range taking into account certain
changes in the medium morphology including possible appearance
of fine cracks in the frozen tissue. The thermal properties of human
tissues at low temperatures have been considered in some books
and journal papers [1,12–14]. At the same time, as was noted in
[14], this information is insufficient and the experimental studies
should be continued.

In the present paper, some general methodological problems
are considered without an attempt of a direct application of the
computational results to one or another human tumor. The objec-
tive of the paper is as follows: (1) to develop an approximate
two-temperature model for calculations of transient heat transfer
in human tissues during a periodic freezing and thawing employed
presently as an effective regime in medical practice, (2) to study

computationally the conditions of a temporary strong thermal
nonequilibrium at local regions of the cooled or heated biological
tissues, (3) to suggest possible principal approach to the micro-
wave monitoring the local volumetric phase changes taking into
account specific spectral properties of a composite two-phase
medium formed during the freezing–thawing process.

2. Heat transfer models

One can imagine three typical morphologies of the composite
tissue for the subsequent use of different heat transfer models.
The most general (and maybe the most realistic) model is based
on assumption of continuous interpenetrating structure of two
components: the cell medium and the extracellular medium. It is
assumed that there is a thermal contact between the elements of
every medium. In some special cases, two other models can be more
adequate to the real conditions. The cells may be suspended in the
extracellular medium without direct thermal contact between the
cells or, on the contrary, the volumes of extracellular medium
may be isolated from each other by more densely packed cells.
The mathematical formulation suggested in the present paper
includes all of the above described variants. To derive coupled
energy equations, it is natural to employ a general theory of heat
transfer in porous media [15]. Note that the model of this type has
been recently suggested in [16] to take into account the volumetric
heat transfer between arterial blood and ambient human tissues.

In this section, we consider the simplest case of a 1-D model
problem for the axisymmetric volume of a two-component med-
ium having in mind that one of these components is a conventional
cellular medium with some average properties and another com-
ponent is an extracellular medium, which is also treated as a
homogeneous one. The formulation of transient heat conduction
problem without taking into account the blood perfusion and
metabolic heat generation is as follows:
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Nomenclature

a radius of particle or droplet
c specific heat capacity
d diameter of particle
E specific coefficient of absorption or scattering
fv volume fraction of droplets
hv volumetric heat transfer coefficient
k thermal conductivity
L latent heat of melting
m complex index of refraction
~m modified complex index of refraction
n index of refraction
P volume fraction of extracellular space
q heat flux
Q efficiency factor of absorption, scattering, or extinction
r radial coordinate
R reflectance, radius of the region
t current time
T temperature
DT temperature difference in Eq. (2)
W absorbed radiation power
x diffraction parameter
~x modified diffraction parameter
Z axial coordinate

Greek symbols
a absorption coefficient
e dielectric constant
j index of absorption
k wavelength
l cosine of an angle
n argument in Eq. (2)
q density
r scattering coefficient or electrical conductivity
u spread parameter
x scattering albedo

Subscripts and superscripts
a absorption
e external
el electrical
m melting
n–h normal–hemispherical
max maximum
s scattering or static
tr transport
k spectral
1, 2 number of the medium
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