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a b s t r a c t

A predictor–corrector method, developed early, was modified to suit the inverse jet flow in a crosswind
problem. The methodology was tested against both numerical and experimental data. The jet was gener-
ated by heating compressed air with a velocity range of 0–5 m/s and temperatures up to 425 K. The
method attempts to predict the jet velocity, temperature, inlet axial location, and elevation with a self
imposed limitation on the number of sample points within the domain. The case where all four of the
parameters are unknown led to inaccurate and unacceptable results with 9 sample points. The thermal
self-similarity of the problem results in an infinite number of solutions to the problem, with no possibility
of narrowing the solution count without more information. Knowing the elevation of the jet results in a
maximum error of 9%, but typically much better. Experimental tests indicate the methodology is sensitive
to error in the sampling data with a few cases reaching an error over 20%. This technique may be
extended to applied areas such as exhaust stacks and fuel injection systems.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Thermal-fluid systems often create situations in which the
engineering problem is an inverse heat transfer problem. These
problems often have limited physical access, very limited to no
boundary condition knowledge, and/or limited domain
information.

For example, the temperature distribution at the wall of an opti-
cal fiber drawing furnace is difficult to measure directly due to
shape, inaccessibility, and high temperatures. The center of the fur-
nace is easily accessible, where the temperature distribution on an
inserted rod may be measured. This leads to the inverse heat trans-
fer problem to obtain the wall temperature distribution that gives
rise to the measured rod temperature distribution. Issa et al. [1]
developed a regularization technique, utilizing this approach, to
determine the wall temperature distribution.

The inverse convection problems have been gaining popularity
as of late. Prud’homme and Nguyen [2] solved transient inverse
convection problems with a single sensor utilizing the conjugate
gradient method, but the sensor needed to be moved closer to
the boundary layer as the Rayleigh number increased. A partially
adiabatic enclosure with heat loss was solved. Liu et al. [3] deter-
mined the thermal profiles in a slot vented enclosure, also utilizing

the conjugate gradient approach, requiring tens of iterations to
achieve less than 1% error. Hong et al. [4] solved the inverse prob-
lem of a differentially heated enclosure with constant wall temper-
atures. They demonstrated that using the conjugate gradient
method required at least nine sample points to resolve the heat
flux into the enclosure. The conjugate gradient method is a popular
method for solving inverse convection problems and is used a
number of other works (e.g. [2–6]).

A different approach is that of the artificial neural network to
solve the inverse heat transfer problem. Both Ghosh et al. [7] and
Kumar and Balaji [8] successfully applied the technique. Ghosh
et al. [7] solved for the heat conduction in a plate. While Kumar
and Balaji [8] solved a similar differentially heated enclosure as
[4]. Although requiring more sample points than [4] the technique
once trained is non-iterative and thus, typically quicker.

Another example is the inverse plume in a crossflow problem.
The problem entails solving for the plume boundary conditions,
utilizing limited domain knowledge. A novel predictor–corrector
method was developed by VanderVeer and Jaluria [9] to solve such
a problem. The method requires a specific pattern of known points
to match exactly against a set of simulations to predict the inverse
solution. The specific pattern was optimized to require the least
number of data points for plume in a crossflow problem [10].
With zero error in the data, a minimum of three known points
was possible. However, small amounts of error, as is usually the
case, would require the known point count to increase to at least
five.
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The present work is the logical progression of the inverse plume
in a crossflow problem, that is the inverse jet in a crossflow prob-
lem. The inverse jet in a crossflow problem has many more practi-
cal applications, such as exhaust stacks and fuel injection systems.
The previous technique will be modified to meet the needs of the
new problem.

2. Experimental system

The experiment consists of a wind tunnel with a surface level
jet located within the test section. The jet uses compressed air
flowing through straighteners to achieve a velocity US and is
heated to temperature TS. The jet is subjected to a perpendicular
crossflow velocity U1. Fig. 1 is a diagram of the wind tunnel and
the jet, with dimensions in millimeters.

The wind tunnel test section dimensions are 54:5� 305�
254 mm. The maximum velocity of the wind tunnel is 5.0 m/s.
The jet is heated by electric cartridge heaters (Omega AHP-7561)
with a maximum temperature of 425 K, due to material limitations
of the wind tunnel. The X-direction is directed downstream of the
wind tunnel with the zero at the center of the jet. The Y-direction is
in the direction of the jet and is zero at the surface of the wind tun-
nel. Due to the large aspect ratio of the wind tunnel � 5 : 1ð Þ, the
flow is assumed to be two-dimensional.

The free stream velocity is determined by a Pitot-Static tube
attached to a NIST traceable differential pressure sensor from
Omega(PX655-0.1DI). The pressure sensor has a full scale reading
of 2.54 mm of water and is accurate to 0.05% of full scale. This
results in a maximum error of 3% in the calculated velocity. The
jet velocity is determined utilizing a rotameter and verified using
a Pitot-Static tube attached to the same previously described
pressure sensor. This results in the same amount of error in the
jet velocity.

The temperature of domain is measured using a K-type thermo-
couple mounted to an X–Y traversing stage. Sampled data over the
course of several days indicate repeatability of the experiment to
within 2%.

3. Numerical simulations

The simulations were all performed using Ansys Fluent [11].
The Navier–Stokes equations were solved using a
three-dimensional, steady state, realizable k—� model with
enhanced wall effects. Conjugate heat transfer effects are modeled.
The free stream Reynolds number Reinfty is of order 6� 103, while

the jet Reynolds number ReS is between 103 and 104. The
Rayleigh number Ra is of order 107.

The governing equations are expressed below:
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The constants for the turbulence model are [12,13]:

C1� ¼ 1:44; C2 ¼ 1:9; rk ¼ 1:0; r� ¼ 1:2; Prt ¼ 0:85 ð8Þ

Nomenclature

r vector location of sampled points
a number of sample locations used in the predictor stage
b; m; C0; C1; C2 model parameters
C1; C2; C1�; Cl; rk; r� k—� model coefficients
d number of simulations
E thermal energy
F minimization function for temperature
G minimization function for velocity
k; � turbulence kinetic energy, dissipation rate
l; I turbulence length scale and intensity
n number of sample locations
Prt turbulent Prandtl number
T temperature
U free stream velocity
X; Y normalized coordinates
x; y coordinates

Greek symbols
D relative difference between the first sampled point and

other sampled points
d vector distance between the actual sampled location

and the current test location

k thermal conductivity
l dynamic viscosity
lt eddy viscosity
/ normalized temperature / ¼ T�T1

TS�T1
q density
e error associated with the inverse convection method at

a location with given sampled data

Superscripts
� predictor stage, alternative heat flux equation

Subscripts
0; 1; 2 sample point indexes
1 free stream
A; B data set A,B
i; j; k index
mod modified
P predicted
S source
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