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a b s t r a c t

The shape variation of a domain naturally results in both shape and orientation variations, so called
configuration variation, when employing a boundary integral equation (BIE) method. A configuration
design sensitivity analysis (DSA) method is developed for steady state heat conduction problems using
the boundary integral equations in an isogeometric approach, where NURBS basis functions in a CAD
system are directly utilized in the response analysis. Thus, we can accomplish a seamless incorporation
of exact geometry and the higher continuity into a computational framework. To enhance the accuracy of
configuration design sensitivity, the CAD-based higher-order geometric information such as normal and
tangent vectors is exactly embedded in the design sensitivity expressions. The necessary velocity field for
configuration design obtained from the NURBS is analytically decomposed into shape and orientation
velocity fields. It is shown to be essential to consider orientation variations and significant for accurate
configuration sensitivity through comparison with finite differencing conventional BIE method. The
developed isogeometric configuration DSA method turns out to be accurate compared with the analytic
solution and the conventional DSA method. During the optimization, a mesh regularization scheme is
employed to avoid excessive mesh distortion, which comes from significant design changes.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Ever since the framework of the isogeometric analysis (IGA)
method is established by Hughes et al. [1], the isogeometric
method that employs the same basis functions as used in the
CAD model has shown many advantages over the standard finite
element method (FEM). The geometric approximation inherent in
the FEM mesh could end up in accuracy problems in response anal-
ysis and more adversely in design sensitivity analysis. Besides, the
isogeometric method has a major feature such as the CAD based
parameterization of field variables in an isoparametric manner.
Thus, it requires no further communication with the CAD systems
during the refinement processes. In applying the IGA to shape
design optimization problems, accurate design sensitivity analysis
(DSA) is essential. Based on the shape DSA theory [2], Cho and Ha
[3] showed the applicability and accuracy of the isogeometric
shape DSA method for the displacement and stress measures.
Qian [4] derived shape design sensitivity equation with respect
to positions and weights of NURBS control points. Wall et al. [5]

showed a structural shape optimization framework based on the
isogeometric analysis approach. In addition to the benefits of
IGA, the isogeometric DSA has the following advantages: First, it
provides more accurate sensitivity of complicated geometries
including higher order effects such as curvature as well as normal
and tangential vectors information. The NURBS functions of higher
continuity offer a much more compact representation of response
and sensitivity of structures than the standard finite element func-
tions do, yielding better accuracy even at the same polynomial
order. Second, it vastly simplifies the design modification of
complicated geometry without communication with the CAD
description. Since the NURBS basis functions are used in both iso-
geometric response and sensitivity analyses, design modifications
are easily obtainable using the adjustment of control points which
represent the geometric model. The design velocity field, defined
as a mapping rate between the original and perturbed domains,
plays an important role in computing configuration design
sensitivity coefficients. For the computation of design velocity
field, a combination of isoparametric mapping and boundary dis-
placement methods is ideal [6]. When using a conventional FEM,
the inter-element continuity of design space is not guaranteed
and thus curvature, normal vector, and tangential vector are not
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accurate enough. On the other hand, in the isogeometric DSA, these
are continuous over the whole design space so that accurate shape
sensitivity is obtainable.

A boundary integral equation (BIE) method for potential prob-
lems was developed by Jaswon [7] and Symm [8] as a pioneering
work and extended to elasticity problems by Cruse [9]. Since then,
the BIE method has extended its applications to heat conduction,
acoustic, and crack propagation problems by means of a powerful
and alternative numerical method. However, a singularity problem
arises due to the singular fundamental solution expressed as Green
functions. The difficulty of dealing with these singularities has
been a main issue in the application of BIE method in various engi-
neering problems, which had naturally led to several integration
schemes to handle the singular integrals. The computation of
Cauchy Principle Value (CPV) for strong singular integrals was pro-
posed by Guiggiani and Casalini [10] as a direct approach and a
rigid body method was developed by Brebbia [11] as an indirect
approach. Liu and Rudolphi [12] shows the integral identities for
fundamental solutions without the computation of CPV.
Meanwhile, a weakly singular integration can be implemented
based on the transformation method by Telles [13]. Recently, a
BIE method employing the isogeometric approach was developed
together with the collocation method to precisely locate the field
and the source points [14].

In the general expression of design variations, the shape variation
of a domain naturally results in both shape and orientation variations
in the BIE method. Therefore, the tangential and the normal design
velocity fields should have been taken into account in the
BIE-based shape design sensitivity analysis (DSA) method that
was developed several decades ago. Using the BIE and adjoint vari-
able method in continuum approach, Choi and Kwak derived shape
DSA methods for the self-adjoint elliptic boundary value problems
[15] and the applications for general stress constrained problems
in terms of tangential and normal design velocity fields [16]. The
BIE-based DSA method was further applied to the shape optimiza-
tion for many engineering problems such as heat conduction,
acoustic, and so on. Also, an extension to isogeometric shape opti-
mization was performed for elastic problems [17].

There are very few studies conducted on the shape optimization
of heat conduction problems. Tortorelli et al. derived the shape
design sensitivity for nonlinear transient thermal systems using a
Lagrange multiplier method [18] and the adjoint method [19].
Sluzalec and Kleiber [20] employed the Kirchhoff transformation
to derive the shape design sensitivity expressions for linearized
heat conduction problems using an adjoint variable approach. Li,
et al. [21] performed a shape and topology optimization of heat
conduction problems using an evolutionary structural optimiza-
tion method. Dems et al. derived first-order sensitivity equation
of heat conduction problem with respect to material property,
external boundary, and internal interface. They obtained the opti-
mal design for various problems [22] including steady state con-
duction with radiation [23]. Wu [24] employed the body-fitted
grid generation scheme to generate curvilinear grids and

determined shape profiles of heat conduction problem using the
finite volume method. Ha and Cho [25] formulated a level set based
design optimization method for heat conduction problems, which
facilitates topological shape variations. Recently, Yoon, et al. [26]
developed isogeometric shape optimization of heat conduction
problem using accurate shape sensitivities obtained from the exact
normal vector and curvature by NURBS.

The remainder of this paper is organized as follows; in Section 2,
we describe the construction of NURBS basis functions, which may
have up to (p-1) continuous derivatives across element boundaries
where p is the order of the underlying polynomial and explain iso-
geometric BIE method based on the NURBS. In Section 3, we derive
the isogeometric BIE configuration design sensitivity considering
the shape and the orientation variations. We discuss the expres-
sions of design velocity fields, where the geometric effects seem
to have profound effects on the orientation sensitivity. In Section
4, demonstrative numerical examples are presented to verify the
accuracy of the isogeometric sensitivity by comparing it with the
analytic or the conventional BEM solutions. Finally, we draw con-
clusions, which present the importance of isogeometric approach
and the exactness of shape and orientation design velocity fields
represented by NURBS.

2. Isogeometric boundary integral equation

2.1. NURBS basis function

In the IGA, the solution space is represented in terms of the
same basis functions as used in describing the geometry. The iso-
geometric analysis has several advantages over the conventional
finite element analysis (FEA): geometric exactness and simple refine-
ments due to the use of NURBS basis functions which are based on
B-splines. Consider a knot vector N in one-dimensional space,
which includes the set of knots ni in a parametric space.

N ¼ n1; n2; � � � ; nnþpþ1

� �
; ð1Þ

where p and n are the order of basis function and the number of
control points, respectively. The B-spline basis functions are
defined, recursively, as

N0
i ðnÞ ¼

1 if ni 6 n < niþ1

0 otherwise

�
; ðp ¼ 0Þ ð2Þ

and

Np
i ðnÞ ¼

n� ni

niþp � ni
Np�1

i ðnÞ þ niþpþ1 � n

niþpþ1 � niþ1
Np�1

iþ1 ðnÞ; ðp ¼ 1;2;3; . . .Þ:

ð3Þ

Using the B-spline basis function Np
i ðnÞ and weight wi, the NURBS

basis function Rp
i ðnÞ is defined as

Rp
i ðnÞ �

Np
i ðnÞwiPn

j¼1Np
j ðnÞwj

: ð4Þ

Nomenclature

hc convection coefficient
n outward normal vector
s tangential vector
Q internal heat generation
q heat flux
T temperature field
T1 ambient temperature
g fundamental solution for temperature

wn fundamental solution for normal flux intensity
V shape design velocity
Vn normal velocity
Vs tangential velocity
X domain
C boundary
c thermal conductivity
j curvature
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