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a b s t r a c t

Using a model of local non-equilibrium diffusion during rapid solidification of a binary system, the isoso-
lutal shapes of growing crystals in steady-state approximation are obtained. It is found that for crystals
growing with constant velocity along a selected coordinate direction, two isosolutal growth shapes can
occur. These are: the parabolic platelet in two-dimensional case and the paraboloid of revolution in
three-dimensional case. In the isothermal case of diffusionless solidification, when the velocity of
solidification is equal to or greater than the solute diffusive speed in the bulk system, these interfaces
can have an arbitrary configuration. Special attention is given to mathematical transformations from
parabolic (paraboloidal) coordinates to usual Cartesian coordinates for Ivantsov solutions extended to
the case of rapid dendritic growth in which the solidification velocity V is comparable with the solute
diffusion speed VD in bulk liquid.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Analytical solutions of Ivantsov [1–3] about shapes of crystals
growing in concentration and heat fields play an exceptional role
in solidification theory and have various practical applications.
Indeed, Ivantsov solutions present zero order approximation of
the stability theory of growing crystals [4,5], they are main equa-
tions for the development of dendritic growth models [6], they
are the basis for the development of the theory of anisotropic
growth of dendritic crystals [7] and crystals under forced convec-
tive transport [8], they present basic solutions for numerical tests
[9] and they play an extraordinary role in interpretation of exper-
imental data [10,11].

Ivantsov [1–3] and also Horvay and Cahn [12] have found solu-
tions for seven main shapes of crystals which satisfy the balance
conditions at the phase interface under diffusional transfer of heat
or mass in the bulk system. These solutions were found for
quasi-equilibrium conditions of growth of isotropic crystals in a
non-stationary regime (the growth velocity is inversely propor-
tional to the square root of time) or in a steady-state regime of
motion with a constant velocity along a selected coordinate direc-
tion which is well-known as ‘‘dendritic problem’’. The latter has

been intensively investigated within the non-isothermal form of
crystal shapes [13] and computations of binary dendrites growing
under non-isothermal conditions [6].

One of the remarkable features of the solution of Horvay and
Cahn is that they directly applied curvilinear coordinates for den-
dritic problem as described by Ivantsov solutions. Having obtained
an elegant method of analytical solution, they have found an
elliptical paraboloid which is usually used in analysis of crystal
growth with non-symmetric forms [14,15]. Further advancement
of Ivantsov solutions was made in their application to rapid
solidification problems for qualitative interpretation and quantita-
tive description of non-linearity in the ‘‘dendrite growth
velocity-undercooling’’ relationship [16,17]. These non-linearities
with steep changes of the crystal growth velocity were, at first,
obtained in kinetics of droplets solidification [11] and they
required special introducing a local non-equilibrium in bulk phases
which lead to an extended description of the mass transport prob-
lem. Indeed, high level of undercooling reached in small droplets
provides fast propagation of the crystal-liquid interface of velocity
V which can be of the order or even larger than a characteristic
diffusion speed VD in bulk phases. Therefore, using methods of
extended thermodynamics [18], the dendritic problem has been
reformulated so that the method suggested by Ivantsov for
solution of the partial differential equations of the parabolic type
for heat or solute diffusion [1–3] has been extended to obtain a
solution of partial differential equation of a hyperbolic type for
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solute diffusion [19]. The hyperbolic transport equation takes into
account a finite speed VD of the atomic diffusion and its solution,
applied to the isothermal dendritic problem, again results in the
steady-state isosolutal shapes: the paraboloid of revolution and
the parabolic platelet. These forms, however, may transform into
arbitrary shapes due to degeneration of the concentration fields
into homogeneous distribution if the growth velocity overcomes
the diffusion speed, i.e. at V P VD.

The main focus of the present article is to apply the method of
Horvay and Cahn to the description based on curvilinear coordinates
for the rapidly growing dendrite. This application requires special
consideration by several reasons. First, because the non-planar para-
bolic interface moves with the constant velocity V � VD only in
one-direction, a specific coordinate transformation with the scale

ð1� V2=V2
DÞ

1=2
should be made for the parabolic (paraboloidal) coor-

dinates that requires a non-trivial treatment. Second, presentations
of the Ivantsov solutions in various forms for practical computations
[6,20,21] should also be generalized to their rapid solidification case
which uses a description of mass transport by the hyperbolic equa-
tion. Third, a suggested method for equations of the hyperbolic type
can be further useful, for example, in analogous problems of gas
dynamics where obtaining solutions of supersonic regimes of gas
flow around the isobaric surfaces is necessary. As a consequence,
the article is devoted to the analytical treatments of the rapidly
growing parabolic crystals to obtain the results useful for their fur-
ther application in analytical and practical computations.

2. The model

Consider the isothermal and isobaric case of solidification in
which crystals grow from a chemically binary liquid. We shall
neglect the slower diffusion in the solid crystal phase in compar-
ison with the much faster diffusion in liquid and assume that the
crystal-liquid interface velocity V may reach values of the order
of the solute diffusion speed VD in the bulk liquid, such that
V � VD � 0:1� 10 m/s [11,16,17]. In this case, we use the model
of local non-equilibrium solidification in which the transport of
atoms is described by the hyperbolic equation

sD
@2C
@t2 þ

@C
@t
¼ Dr2C: ð1Þ

together with the boundary condition

�DrnC ¼ ðC � CSÞVn þ sD
@

@t
ðC � CSÞVnð Þ; ð2Þ

CS ¼ kC; ð3Þ

and with the far-field condition for the solute concentration C in
liquid,

Cj1 ¼ C0: ð4Þ

Here sD ¼ D=V2
D is the relaxation time of diffusion flux to its steady

state, D is the coefficient of solute diffusion in liquid, VD is the solute
diffusion speed in the bulk liquid (it is considered also as speed of

the front of solute diffusion profile),rnC ¼~n � ~rC is the normal gra-
dient of solute concentration to the interface, ~n ¼ ðnx;ny;nzÞ is the
normal vector to the interface with the components nx;ny,

nz;Vn ¼ ~V �~n is the projection of the vector velocity ~V on the vector
~n and kðVnÞ is the coefficient of solute partitioning at the interface
dependent of the normal velocity Vn.

Equation (1) is the simplest mathematical model combining the
diffusive (dissipative) mode and the propagative (wave) mode of
mass transport under local non-equilibrium conditions [18]. In
addition to the usual ‘‘Fickian diffusion’’ with which a pure

dissipative process can be described, Eq. (1) may predict propaga-
tive and diffusive features of the diffusion process and, therefore,
terminologically, it can be characterized as ‘‘non-Fickian diffusion’’.
Together with the conditions (2)–(4), the problem of dendrite
growth has been analysed numerically for isothermal approxima-
tion [22] and under non-isothermal conditions of crystal growth
[23]. Verifications of such descriptions have been made in atomis-
tic simulations [24] and derived from the coarse-grained approach
for fast transformations [25].

Further, we shall consider the dendritic problem [1–3] in which
growth of the isosolutal needle-like shape proceeds with a con-
stant value of velocity V along the selected space direction.
Introducing the Cartesian coordinate system in which the z-axis

coincides with the direction of the velocity vector ~V , we analyze
the problem in new Cartesian coordinates fixed to the crystal.
Then, Eq. (1) takes the form

@2C
@x2 þ

@2C
@y2 þ 1� V2

V2
D

 !
@2C
@z2 þ

V
D
@C
@z
¼ 0: ð5Þ

Using Eq. (2), the interface boundary condition leads to

�D rnC � VVn

V2
D

@C
@z

 !
¼ ðC � CSÞVn:

Finally, taking into account the condition Vn ¼ nzV , Eq. (2) is rewrit-
ten as

nx
@C
@x
þ ny

@C
@y
þ nz 1� V2

V2
D

 !
@C
@z
¼ �ðC � CSÞ

Vnz

D
: ð6Þ

3. Growth regimes

As experimentally found [11], drastic changes in the kinetics of
rapid solidification occur around the growth velocity V comparable
with the diffusion speed VD. Therefore, considering Eq. (5) one
should distinguish three qualitatively different cases of relation-
ship between V and VD. These describe the regimes at which the
interface moves with: (i) the velocity smaller than the solute diffu-
sion speed in the bulk liquid (V < VD), (ii) the velocity equal to the
solute diffusion speed (V ¼ VD) and (iii) the velocity greater than
the solute diffusion speed (V > VD).

A general solution of Eq. (5) can be expressed in terms of the
eigenfunctions eimx=

ffiffiffiffiffiffiffi
2p
p

and einy=
ffiffiffiffiffiffiffi
2p
p

of the Laplace operator as

Cðx; y; zÞ ¼
Z 1

�1

Z 1

�1
eimxeinyf mnðzÞdmdnþ C0; ð7Þ

where m and n are the corresponding eigenvectors. As the concen-
tration C far from the interface is equal to C0, the functions f mnðzÞ
have to be zero at z!1. Substitution of Eq. (7) into Eq. (5) leads
to the ordinary differential equation for f mnðzÞ:

1� V2

V2
D

 !
d2f mn

dz2 þ
V
D

dfmn

dz
� ðm2 þ n2Þf mn ¼ 0: ð8Þ

The nontrivial solutions of Eq. (8) have the form f mn � ekz with fac-
tors k subject to equation

1� V2

V2
D

 !
k2 þ V

D
k� ðm2 þ n2Þ ¼ 0: ð9Þ

3.1. Case V < VD

Using Vieta’s formulas which give the relation between the
roots k1 and k2 and the coefficients of the quadratic Eq. (9), we have

P.K. Galenko et al. / International Journal of Heat and Mass Transfer 89 (2015) 1054–1060 1055



Download English Version:

https://daneshyari.com/en/article/7056638

Download Persian Version:

https://daneshyari.com/article/7056638

Daneshyari.com

https://daneshyari.com/en/article/7056638
https://daneshyari.com/article/7056638
https://daneshyari.com

