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a b s t r a c t

The effects of buoyancy ratio on unsteady double-diffusive natural convection in a cavity filled with
porous medium with uniform and non-uniform boundary conditions are analyzed in this paper. It is
assumed that the left vertical wall and bottom wall are heated and concentrated (uniformly and non-
uniformly), while the right vertical wall is maintained at a constant cold temperature, and the top wall
is well insulated. The governing equations are solved numerically using a staggered grid finite-difference
method to determine the streamlines, isotherms, isoconcentrations, local Nusselt number, local Sherwood
number, average Nusselt number and average Sherwood number for various values of buoyancy ratio and
Rayleigh number. The change of flow patterns with respect to time depicted and described here. The
results are compared with previously published work and excellent agreement has been obtained.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Studies of flow through porous medium have attracted consid-
erable research attention in recent years because of their several
important applications notably in the flow through packed beds,
extraction of energy from geothermal regions, filtration of solids
from liquids, flow of liquids through ion-exchange beds, the eval-
uation of the capability of heat removal from nuclear fuel debris
that may result from an accident in a nuclear reactor and in chemi-
cal reactors for the separation or purification of mixtures [1–4].

Fluid flow, heat and mass transfer induced by double-diffusive
natural convection in fluid saturated porous media have practical
importance in many engineering applications [5]. This aspect of
fluid dynamics has gained considerable attention in recent years
among researchers. The migration of moisture in fibrous insula-
tion, drying processes, chemical reactors, transport of con-
taminants in saturated soils and electro-chemical processes are
some examples of double-diffusive natural convection phenomena.
Double-diffusion occurs in a wide range of scientific fields such as
oceanography, astrophysics, geology, biology and chemical pro-
cesses. In the recent past, a significant number of researchers have
shown a keen interest in the study of heat and mass transfer in

enclosures and cavities. Double-diffusive natural convection in
cavities has been subject to an intensive research due to its impor-
tance in engineering and geophysical problems. This includes
nuclear reactors, solar ponds, geothermal reservoirs, solar collec-
tors, crystal growth, electronic cooling and chemical processing
equipments.

The numerical investigation of natural convection in porous
trapezoidal enclosures has been performed for uniformly or non-u-
niformly heated bottom wall by Basak et al. [6]. Sathiyamoorthy
et al. [7] studied non-Darcy buoyancy flow in a square cavity filled
with porous medium for various temperature difference aspect
ratios. Deng et al. [8] investigated fluid, heat and contaminant
transport structures of laminar double diffusive mixed convection
in a two-dimensional ventilated enclosure numerically. Roy et al.
[9] performed finite element simulation on natural convection flow
in a triangular enclosure due to uniform and non-uniform bottom
heating. Later, Alimi et al. [10] studied the buoyancy effects on
mixed convection heat and mass transfer in an inclined duct pre-
ceded with a double step expansion. Brown and Lai [11] numerical-
ly examined combined heat and mass transfer from a horizontal
channel with an open cavity heated from below numerically.
Teamah [12] studied double-diffusive convective flow in a rectan-
gular enclosure with the upper and lower surfaces being insulated
and impermeable by imposing constant temperature and concen-
tration along the left and right walls of the enclosure and a uniform
magnetic field was applied in a horizontal direction. Saha et al.
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[13] investigated the new characteristics of the airflow and
heat/contaminant transport mechanism inside a vented cavity in
terms of streamlines, isotherms and isoconcentration lines.

Minkowycz et al. [14] showed that the discontinuity can be
avoided by choosing a non-uniform temperature distribution along
the walls (i.e. non-uniformly heated walls). Roy and Basak [15]
solved the nonlinear coupled partial differential equations for flow
and temperature fields with both uniform and non-uniform tem-
perature distributions prescribed at the bottom wall and at one
vertical wall. Teamah et al. [16] studied the effect of the heater
length, Rayleigh number, Prandtl number and buoyancy ratio on
both average Nusselt and Sherwood number with uniform heating
at left vertical wall. Karimi-Fard et al. [17] studied double diffusive
natural convection in a cavity filled with a porous medium. Patil
et al. [18] investigated double diffusive mixed convection flow over
a vertical plate. Nithiarasu et al. [19] studied the development of
the variable porosity model in natural convection heat transfer in
detail. Recently, Mahapatra et al. [20] investigated the effects of
buoyancy ratio and the thermal Rayleigh number on double diffu-
sive natural convection in a cavity when the boundaries are uni-
formly and non-uniformly heated and concentrated.

The aim of this investigation is to study the effects of buoyancy
ratio and Rayleigh number on the heated and concentrated walls in
terms of streamlines, isotherms, isoconcentrations, local Nusselt
number, average Nusselt number, local Sherwood number and
average Sherwood number when the bottom wall and left vertical
wall are heated and concentrated (uniformly and non-uniformly),
right vertical wall is cooled by means of a constant temperature
and top wall is well insulated. The thermal and mass exchanges
generated in the case of co-operating thermal and concentration
buoyancy effects with uniform and non-uniform boundary condi-
tions have been analyzed.

2. Governing equations and boundary conditions

An unsteady-state two-dimensional square cavity of height L as
shown in Fig. 1 is considered. It is assumed that the top wall is con-
sidered to be adiabatic. The bottom wall and left vertical wall are
heated and concentrated (uniformly and non-uniformly) and right
vertical wall is cooled by means of a constant temperature. The
thermophysical properties of the fluid are assumed to be constant
except the density variation in the buoyancy force, which is
approximated according to the Boussinesq approximation. This
variation, due to both temperature and concentration gradients,
can be described by the following equation:

q ¼ q0½1� bTðT � TcÞ � bSðC � CcÞ� ð1Þ

where bT and bS are the thermal and concentration expansion coef-
ficients, respectively. In the cartesian coordinate system, the funda-
mental governing equations are as follows (see Marcondes et al.
[21], Mahapatra et al. [22] and Mahapatra et al. [23]):
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The associated boundary conditions are when t0 ¼ 0 for
0 6 X;Y 6 L:

UðX;YÞ ¼ 0 ¼ VðX;YÞ; ð7Þ

TðX;YÞ ¼ Tc; CðX;YÞ ¼ Cc; ð8Þ

when t0 > 0 for 0 6 X; Y 6 L:

UðX; LÞ ¼ UðX;0Þ ¼ Uð0;YÞ ¼ UðL;YÞ ¼ 0; ð9Þ

VðX;0Þ ¼ VðX; LÞ ¼ Vð0;YÞ ¼ VðL;YÞ ¼ 0; ð10Þ

TðX;0Þ¼ Th or TðX;0Þ¼ ðTh�TcÞsinðpX=LÞþTc;
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where, X and Y are the distances measured along the horizontal and
vertical directions respectively; U and V are velocity components in
the X- and Y- directions respectively; T and C denote the temperature
and concentration respectively; m;a and D are kinematic viscosity,
thermal diffusivity and mass diffusivity respectively; P is the pres-
sure and q is the density; Th and Tc are the temperatures at the
hot and cold walls respectively; Ch and Cc are the concentrations
at the hot and cold walls respectively; L is the side of the square cav-
ity. We now introduce dimensionless variables given as follows:
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a
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h ¼ T � Tc
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; S ¼ C � Cc
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: ð16Þ

Here x and y are dimensionless coordinates along the horizontal and
vertical directions respectively; u and v are dimensionless velocity
components in the x- and y- directions respectively; h and S denote
the dimensionless temperature and concentration respectively; p is
the dimensionless pressure parameter.

Using these dimensionless variables, we obtain the following
dimensionless governing equations from the Eqs. (2)–(6):
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