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a b s t r a c t

Forced convection heat transfer in a micro-channel filled with a porous material saturated with rarefied
gas with internal heat generation is studied analytically in this work. The study is performed by analysing
the boundary conditions for constant wall heat flux under local thermal non-equilibrium (LTNE) condi-
tions. Invoking the velocity slip and temperature jump, the thermal behaviour of the porous-fluid system
is studied by considering thermally and hydrodynamically fully-developed conditions. The flow inside
the porous material is modelled by the Darcy–Brinkman equation. Exact solutions are obtained for both
the fluid and solid temperature distributions for two primary approaches models A and B using constant
wall heat flux boundary conditions. The temperature distributions and Nusselt numbers for models A and
B are compared, and the limiting cases resulting in the convergence or divergence of the two models are
also discussed. The effects of pertinent parameters such as fluid to solid effective thermal conductivity
ratio, Biot number, Darcy number, velocity slip and temperature jump coefficients, and fluid and solid
internal heat generations are also discussed. The results indicate that the Nusselt number decreases with
the increase of thermal conductivity ratio for both models. This contrasts results from previous studies
which for model A reported that the Nusselt number increases with the increase of thermal conductivity
ratio. The Biot number and thermal conductivity ratio are found to have substantial effects on the role of
temperature jump coefficient in controlling the Nusselt number for models A and B. The Nusselt numbers
calculated using model A change drastically with the variation of solid internal heat generation. In con-
trast, the Nusselt numbers obtained for model B show a weak dependency on the variation of internal
heat generation. The velocity slip coefficient has no noticeable effect on the Nusselt numbers for both
models. The difference between the Nusselt numbers calculated using the two models decreases with
an increase of the temperature jump coefficient.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The study of microscale heat transfer has attracted significant
interests over the last decade leading to the miniaturisation of var-
ious technological devices such as pumps, turbines, mixers and
heat pipes, which are generally referred to as micro-flow devices
(MFDs) [1,2]. Such micro-devices have revolutionised complex sys-
tems for medical diagnosis and surgery, chemical analysis, biotech-
nology and electronic cooling [2]. The flow regimes and modelling
of flow in micro-systems are classified using the Knudsen number
(Kn = k/DH), which is defined as the ratio of the molecular mean-
free-path (k) to a characteristic macroscopic length scale, i.e. the
hydraulic diameter (DH). It allows having a measure of the validity

of the continuum model and a classification of gas flow regimes
[2,3]. The Navier–Stokes equations, which assume the continuum
flow, work well with the no-slip conditions at Kn < 0.001. The con-
tinuum assumption is still valid when 0.001 < Kn < 0.1, while a
finite slip condition needs to be considered at the boundary of
the flow domain (e.g. [4–9]). The regime of flow with
0.001 < Kn < 0.1 is called slip-flow regime. At higher Knudsen num-
bers, the Navier–Stokes equation is not applicable and the kinetic
theory must be applied [2,3]. Modelling convection through such
small devices is different from its macroscale counterparts in that
the velocity slip and temperature jump are included, as noted in
[10]. This article focuses on the slip-flow regime in a channel filled
with a porous material. Analysis of heat and fluid flow in
micro-channels filled with a porous material under local thermal
equilibrium condition has been studied extensively (e.g. [7,11,12]).
However, analytical studies on slip flow in porous-saturated
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micro-channels under local thermal non-equilibrium condition
have not been conducted to the same extent.

In principle, there are two methods of modelling the energy
equation in a porous medium. These are the local thermal equilib-
rium (LTE) and local thermal non-equilibrium (LTNE) models [13].
LTE model holds only when the temperature difference between
the solid and fluid phases is negligibly small. In reality, however,
this temperature difference may not be small. Hence, a more pre-
cise analysis should relax the assumption of LTE and use LTNE
model instead. However, the use of LTNE model in a channel sub-
ject to a constant wall heat flux boundary condition requires addi-
tional information to account for the modes of energy
communication between the two phases at the channel wall
[14,15]. This information are usually provided in the form of mod-
els related to the constant wall heat flux boundary conditions
[14,15]. This, in turn, makes the thermal behaviour of the system
dependent upon the applied model. Extra levels of complexity
are hence added to the problem, which involve devising the proper
models and including them in the analysis. In contrast, boundary
conditions for constant wall temperature are clear and both phases
have temperatures that are equal to the wall temperature.

One of the early studies was the numerical analysis of natural
convection heat transfer in a vertical open-ended parallel-plate
micro-channel filled with porous media by Haddad et al. [12]
under LTNE condition using the Darcy–Brinkman–Forchheimer
model. It was observed that the Nusselt number decreased with
increase in the Kn number, Darcy number and thermal conduc-
tivity ratio. Further, the authors reported that the Nusselt number
increased as Forchheimer number and Biot number increased. In
another study, Haddad et al. [16] performed numerical investiga-
tions into forced convection inside a micro-channel assuming LTE
condition and the Darcy–Brinkman–Forchheimer model. They
found that the rate of heat transfer increased as the Darcy number
increases and it decreased when the Knudsen number or Forch-
heimer number increases. Haddad et al. [17] studied numerically
the laminar forced convection gaseous slip-flow through parallel-
plates micro-channel filled with porous medium under LTNE con-
dition and assuming Darcy–Brinkman–Forchheimer model. The
same problem was studied numerically by Haddad et al. [18] in a
circular micro-channel under LTE condition. In both studies, the
micro-channel wall was subjected to constant wall temperature
condition. Similar to their previous studies, they found that the

Nomenclature

asf interfacial area per unit volume of porous media (m�1)
A constant parameter defined by Eq. (29-3)
B constant parameter defined by Eq. (29-4)

Bi Biot number, asf hsf h2
0

ð1�eÞks
defined by Eq. (21)

C constant parameter defined by Eq. (29-8)
cp specific heat of the fluid, (J kg�1 K�1)
Da Darcy number, K/H2

DH hydraulic diameter of the channel (4H)
G1, G2 and G3 constant parameters defined by Eqs. (29-5)–(29-7),

respectively
hsf fluid to solid heat transfer coefficient (W m�2 K�1)
2H height of the micro-channel (m)
H1 and H2 constant parameters defined by Eqs. (29-9) and (29-

10), respectively
J1, J2 and J3 constant parameters defined by Eqs. (51-1), (51-2)

and (51-4), respectively
K permeability of the porous medium (m2)
k the ratio of fluid effective thermal conductivity to that

of the solid, (ekf)/(1 � e)ks defined by Eq. (21)
kf thermal conductivity of the fluid (W m�1 K�1)
kf,eff effective thermal conductivity of the fluid, ekf

ks thermal conductivity of the solid (W m�1 K�1)
ks,eff effective thermal conductivity of the solid, (1 � e)ks

Kn Knudsen number based on permeability, k=
ffiffiffiffi
K
p

M viscosity ratio leff/l
Nu Nusselt number
p pressure (Pa)
Pr Prandtl number
q heat flux (W m�2)
Sf internal heat generation within the fluid phase W m�3

Ss internal heat generation within the solid phase W m�3

T temperature (K)
T1, T2 constant parameters defined by Eqs. (51-5) and (51-7),

respectively
Tf,m average temperature (K)
u longitudinal velocity (m/s)
u average velocity
ur characteristic velocity, �ðH2=lÞð@p=@xÞ
U dimensionless velocity, u=ur

U dimensionless average velocity
w =wf + ws

wf parameter defined by Eq. (22) ¼ ðH=qwÞSf

ws parameter defined by Eq. (22) ¼ ðH=qwÞSs

W constant parameter defined by Eqs. (51-6)
x longitudinal coordinate (m)
X constant parameter defined by Eqs. (51-3)
y transverse coordinate (m)
Y dimensionless y coordinate, y/H
Z constant parameter,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=MDa

p
Greek symbols
a velocity slip coefficient ¼ a0

2�rv
rv

Kn
ffiffiffiffiffiffi
Da
p

defined by Eq.
(10)

b temperature jump coefficient ¼ b0
2�rT
rT

2c
cþ1

Kn
Pr

ffiffiffiffiffiffi
Da
p

de-
fined by Eq. (20)

c specific heat transfer ratio
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bið1þ 1=kÞ

p
; defined by Eq. (29-1)

e porosity of the porous medium
Dh dimensionless temperature difference = hf � hs

h dimensionless temperature
hf,m dimensionless bulk fluid temperature defined by Eq.

(34)
k mean free path m
l viscosity (kg m�1 s1)
leff effective viscosity of the porous medium (kg m�1 s1)
q density, (kg/m3)
r accommodation coefficient
f parameter used in Eq. (13) ¼ 1þ aZ tanhðZÞ
v parameter used in Figs. 14 and

15 = ðhjb¼0:1 � hjb¼0Þ=hjb¼0:1

Subscripts
eff effective property
f fluid
m mean
s solid
T thermal
v momentum
w wall

Superscripts
� mean value
0,0 0,0 0 0,0 0 0 0 first, second, third, and forth derivatives with respect to
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