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a b s t r a c t

There are experimental works demonstrating distinction of initiated thermal stresses in dielectrics and
metals at short-term laser heating. However, such thermal stresses in metals are not described by
analytical solutions obtained within existing models of dynamic thermoelasticity.

In this paper a dynamic thermoelasticity problem with short pulse laser heating is analyzed. The
difference between mechanisms of heat conduction in dielectrics and metals is taken into account. The
analysis is based on the model of ‘‘the thermal piston’’ moving due to the flow of free electrons transfer-
ring heat in metals. This model may be associated with hydrodynamic problem of piston motion.

The additional contribution to the stress pulse in heat-conductive media (metals) is taken into account
by solving the wave equation with a moving boundary. It is shown that such approach describes well the
difference in the parameters of the stress pulses in dielectrics and metals observed in the experiments. As
a result, it is found that the average mechanical stress pulse is not zero, and fast non uniform heating can
lead to moving of metal objects.

The presented results of experiments and the analysis of dynamic thermoelasticity problem confirm
the possibility of movement of heat-conducting objects (metals) under pulsed non uniform heating.
The object movement is determined by the stretching phase of thermoelastic stresses, the formation of
which is caused by the movement of ‘‘the thermal piston’’.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic problem of thermoelasticity was first considered
by Danilovskaya [1] who found a solution for stress during thermal
blow. Later, a more exact solution for the problem of thermal
stress, due to a pulsed thermal flow directed to a semi space
border, was given in [2].

Subsequent studies of the dynamic problem of thermoelasticity,
including an analysis of the effect of connectivity, boundary and
initial conditions [3–6], as well as the use of the Cattaneo, CTE,
L–S and G–L models [7–11], have not made any fundamental
changes in the solution for thermoelastic stresses. Temporal pro-
files of stress pulses (or a mass velocity of particles) described by
these solutions, represent a bipolar compression–tension pulse
with commensurate values of the amplitudes and the duration of
the phases comparable with the duration of a radiation pulse. In
this case, the thermal conductivity of the medium has a rather
weak effect on the change of the amplitude and the duration of
the phases.

However, it was noted in a number of experimental works
[12–14] that the waveform of stress pulses in metals deviates con-
siderably from that predicted by the above-mentioned solutions.
Fig. 1 shows the normalized dependences of the pulses of thermal
stresses in dielectrics and metals [14]. A fundamental difference
in the ratio of the durations and the magnitudes of phases of com-
pression and extension of the thermal stresses in dielectrics and
metals is obvious. That is, in contrast to the classical solutions
[1,2] and the solutions of the Cattaneo, CTE, L–S and G–L theories
[7–11], an average mechanical impulse in metals is not equal to
zero. These results suggest that heat and mass transfer in metals
are common consequence of the movement of nearly free electrons.

The above necessitates gaining a deeper insight into the forma-
tion of the dynamic thermoelasticity problem for thermo- and
electrical conductivity mediums, considering the mathematical
and physical aspects of the problem, as well as experimental
results [12–14], which indicate an essential distinction in the for-
mation of thermoelastic tension stresses for heat-conducting and
not heat-conducting mediums.

It is known that electrons carry a large part of heat in metals
and the flow of these electrons can be described by the hydrody-
namic model [15,16]. In the heat transfer process by means of elec-
trons, each electron under the influence of ‘‘thermal force’’ E � kDT
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carries heat energy kT (k is Boltzmann’s constant). On the other
hand, an-harmonic expansion terms of crystal potential energy
expanded into the Taylor series according to the lattice shift are
connected with thermal expansion. According to the Mie–
Gruneisen equation of state an increase in internal energy of the
micro volume leads to the generation of elastic waves. Thus, the
heat transfer process by means of electrons looks like a ‘‘heat
piston’’.

2. Problem statement

Let us consider the problem of one-dimensional dynamic
thermoelasticity using the ‘‘thermal piston’’ model. The standard
equations of the disconnected dynamic thermoelasticity problem
for a one-dimensional case and Duhamel’s ratio can be written in
the form [1]:

@2u
@x2 �

1
c2

@2u
@t2 � b

@T
@x
¼ 0

@T
@t
� v @

2T
@x2 ¼ 0 ð1Þ

@u
@x
¼ r

kþ 2l
þ bT

where b ¼ ð3kþ 2lÞaT=ðkþ 2lÞ; c2 ¼ ðkþ 2lÞ=q; k, and l are
Lame’s constants; aT is the thermal expansion coefficient; q is the
density; v is the thermal diffusivity coefficient; u is the displace-
ment; and T is the temperature of the body.

The initial conditions are

Tðx;0Þ ¼ 0;
@uðx;0Þ
@x

¼ @
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The boundary conditions are

Tð0; tÞ ¼ T0;
@uð0; tÞ
@x

¼ 0 ð1bÞ

Fig. 2(a) shows the characteristics X ¼ f ðtÞ of the equation
system (1). The intersection point of the characteristics
ðx� ¼ v=c; t� ¼ v=c2Þ is determined by the thermal and elastic prop-
erties of the materials. In addition, this point defines the boundary
of possibility of application of the continuum mechanics equations
to the analysis of the thermoelastic effects.

For example, the intersection point of the characteristics for
metals corresponds to the values of t� � 10�12—10�11 s and
x� � 10—100 nm. However, the evaluation time of the electron–
ion interaction gives values of se—ph � 10�11—10�10 s, and the
evaluation time of the ion–ion interaction (central collisions) gives
values of sph—ph � 10�10—10�9 s. That is, until the characteristic
point ðx�; t�Þ, it is incorrect to use the concept of the uniform

thermodynamic temperature of the medium, as well as the
approach of the theory of elasticity.

Note that, the hyperbolic Catteneo model of heat conductivity is
widely applied to describe phenomena at large temperature
gradients, when the classical correspondence between heat flux
and the gradient is not performed. For example, the Catteneo
model is usually used to describe the processes of heat shock,
when the duration of the thermal loading is less than the relax-
ation time of the heat flux sq [9]. For metals, an estimation of this

time gives the value sq � 10�11 s [4,10]. The duration of the laser

pulse in our experiments is tp � 3� 10�8 s.
Thus, a correct analysis of a thermoelastic response of solids,

based on (1), is possible only for the time t P t� and with the
exclusion of the formalism of the heat equation (which leads to
an infinite speed of heat distribution).

The dependences of temperature calculated according to the
solution of the thermal equation [14] for radiation on the metal
with the duration of a laser pulse of tp ffi 3 � 10�8 s are presented
in Fig. 2(b) and (c). The change in temperature with depth X for dif-
ferent values of the dimensionless time t=tp is shown in Fig. 2(b).
The temperature dependences on the dimensionless time t=tp for
the different distances from the irradiated surface are shown in
Fig. 2(c).

The analysis of the temperature change of the medium in space
and time (Fig. 2(b) and (c)) indicates the need to consider the
contribution of thermal stresses of micro volumes of the medium
heated by the spread of the heat flux (Fig. 2(d)).

Thereby, such generation of elasticity waves in the thermal flow
movement due to the electron transport process can be associated
with the hydrodynamic problem of piston moving (in our case the
‘‘thermal piston’’).

To account for the thermal piston influence in the case of t > t�

we will present (1) as follows:

u ¼ ua þ uT ð2Þ

where ua is displacement in accordance with (1) with the corre-
sponding usual initial and boundary conditions [2] and uT is the dis-
placement due to the ‘‘thermal piston’’ activity.

In the case of uT ! 0 , we have the ordinary equation system for
non-thermal conductivity materials. For heat-conducting media
(metals), we obtain a wave equation for U in addition to (1):

@2uT
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@t2 ¼ 0 ð3Þ

Wave equation (3) for uT describes a process due to thermal trans-
formation in the thermal-transfer medium and it requires the set-
ting of boundary conditions for the characteristics of the thermal
equation xðtÞ ¼ 2

ffiffiffiffiffi
vt
p

[17], and for time t P 2
ffiffiffiffiffi
vt
p

=c the heated
medium range is unloaded; consequently, there is no stress on
the boundary rx ¼ 0jx¼2

ffiffiffiffi
vt
p .

Fig. 1. Time dependences of pulses of thermal stresses initiated by a laser pulse of tp ffi 3 � 10�8 s: (a) in dielectrics, and (b) metallic samples [14].
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