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a b s t r a c t

We study the mixed convection boundary layer heat transfer of power law fluid over a moving conveyor
along an inclined plate. The effects of shear flow and power law viscosity on the temperature field are
taken into account according to a modified Fourier law. Approximate analytical solutions are obtained
by the homotopy analysis method (HAM). Results indicate that heat transfer is strongly dependent on
the values of power law exponent, inclination angle, boundary velocity ratio and Prandtl number.
Three distinct characteristics are found for power law exponents 0 < n < 1, n = 1 and n > 1, especially
the nonlinear behavior due to skin friction and local Nusselt number shown in Figs. 4 and 17, which
has never been reported before. The decrease of inclination angle causes the loss of velocity boundary
layer but the gain of temperature boundary layer. Heat transfer efficiency is enhanced but skin friction
is diminished with the increase in velocity ratio (the ratio of conveyor velocity/mean velocity of flow
field). Critical ratio (with skin friction zero) is obtained which strongly depends on the power law
exponent. The effects of involved parameters on the velocity and temperature fields are analyzed.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the investigation of mixed convection heat
transfer has attracted considerable attention in many fields of
science and technology because of its wide applications, for
example, the circulation due to different density along the vertical
direction in a lake due to seasonal variation, different temperature
atmospheric flow, and heat exchanger in fuel in nuclear reactors.
The most prominent feature of mixed convection is buoyancy force
caused by varying density and temperature. Mathematically
speaking, under Boussinesq’s hypothesis, the momentum and
energy equations describing mixed convection are highly coupled.
According to Prandtl’s boundary layer theory, a fluid with mixed
convection will induce a boundary layer close to the vertical plate
due to the viscosity of fluid. Through dimensional analysis,
boundary layer governing equations can be simplified by the
Navier–Stokes equations. The air-heat convection around the verti-
cal plate has been measured and the results of existence of
momentum and thermal boundary layers have been proved [1].

It is well recognized that non-Newtonian fluids are important in
science research and engineering. A main reason may be attributed

to the fact that the fluids (such as molten plastics, pulps, slurries,
emulsions), which do not obey Newtonian postulate that the stress
tensor is directly proportional to the deformation tensor, are
produced industrially in increasing quantities. Many models have
been proposed to describe behaviors of such fluids. Among those
models, the power-law model [2], in which shear stress varies
according to a power-law function of strain rate, has gained
considerable acceptance. The boundary layer equations for a power
law fluid were studied in [3–7]. The flow and heat transfer in
power law fluid over a stretching sheet were investigated in
[8,9]. Zhang et al. [10] and Bharti et al. [11] solved numerically
the thermal boundary layer on a continuous moving surface in a
power law fluid. They asserted that boundary layer temperature
distribution depends on not only plane velocity, but also on the
power law exponent n and generalized Prandtl number Npr .

In classical works for a power law fluid, power-law kinematic
viscosity was introduced in the momentum equation but the
energy equation was treated the same as in Newtonian fluids.
Obviously, this is inconsistent with the fact that changing viscosity
should affect both momentum and heat transfer. Some researchers
have paid special attention to this inconsistency as the rough
assumption of thermal conductivity for non-Newtonian fluid does
not meet the sophisticated industrial requirements. Pop et al. [12–
14] proposed a model for heat transfer that the thermal
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conductivity of non-Newtonian fluids has power-law dependence
on the velocity gradient. Zheng [15,16] took the effects of power-
law viscosity on temperature field into account by assuming that
the temperature field is similar to the velocity field. The Navier–
Stokes equation and energy equation are modified with Fourier’s-
law heat conduction. They assumed that the thermal diffusivity
varies as a function of velocity gradient or temperature gradient
in energy equation of a power law fluid. A comparison for both
models was presented. Natalia and Pop [17] investigated the
steady mixed convection stagnation point flow over a vertical flat
plate with a second order slip and the maintained heat flux. Two
branches of solutions, upper and lower branch, were found in a
certain range of mixed convection and velocity slip parameters.
In addition, many other mixed convection heat transfer problems
with different boundary conditions were investigated such as
convection in inclined rectangular [18], mixed convection heat
transfer with the effects of magnetic field [19,20] were also consid-
ered in porous medium and nanofluid [21–23].

Homotopy analysis method (HAM) was introduced by Liao in
1992, which has been successfully applied to many nonlinear
problems, especially the calculation of boundary layer problems.
Liao [24–29] proved that the series solution obtained by HAM
convergence strongly depends on an auxiliary parameter h. In
addition, some associated optimization and optimal homotopy-
analysis methods were added recently by Liao [30]. The way as
how to construct the initial guess solutions for natural convection
with natural boundary conditions can be found in ref. [31].

The study for mixed convection heat transfer of non-Newtonian
fluid, so far in our opinion, is inadequate. In this paper, we study
mixed convection heat transfer of power law fluid over a moving
conveyor along an inclined plate. Unlike most classical studies
for Newtonian fluids, the effects of power-law fluid viscosity on
temperature field are taken into account here by us by assuming
that the temperature field is similar to velocity field with a modi-
fied Fourier’s law. The effects of moving conveyor and inclined
plate on the overall convection system, i.e., the velocity ratio
coefficient cu ¼ Uw

Um
? and incline angle u, the generalized Prandtl

number Npr and power law exponent n on velocity and tem-
perature field are graphically assessed, respectively. The general-
ized local Grashof number Grn and local Nusselt number Nu for
power law fluids are also derived and discussed.

2. Governing equations

Consider a steady laminar mixed convection boundary layer
flow and heat transfer in power-law fluid over a moving conveyor
along an inclined plate, where the essential features of such a flow
are illustrated in Fig. 1. It is assumed that the body force is
X ¼ �qg, and the boundary layer governing equations describing

conservation of mass continuity, momentum and energy can be
written as:
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Y ¼ 0 : U ¼ Uw; V ¼ 0; T ¼ Tw ð4Þ

Y !1 : U ¼ 0; T ¼ T1 ð5Þ

where the shear stress is characterized as s ¼ �lðj @U
@Y j

n�1 @U
@YÞ, the

kinematic viscosity is �m ¼ xj @U
@Y j

n�1(�l and x ¼ �l=q are positive

constant), �kj @U
@Y j

n�1 is the generalized thermal conductivity in terms
of a modified Fourier’s law, b is the expansion coefficient of power
law fluid, Uw is the velocity of moving conveyor, Tw is the surface tem-
perature of the inclined plate, 0 < u 6 p

2 is the angle between inclined
plate with respect to the horizontal direction. The case n ¼ 1 corre-
sponds to a Newtonian fluid, 0 < n < 1 is pseudo-plastic non-
Newtonian fluids while n > 1 describes dilatant fluids, respectively.

The following dimensionless variables are introduced:

u ¼ U
Um

; v ¼ V
Um

; x ¼ X
L sinu

; y ¼ Y
L sin u

; h ¼ T � T1
Tw � T1

ð6Þ

Nomenclatures

q density of fluid
cp specific heat capacity of fluid
n power law exponent
cu velocity ratio coefficient
cc critical velocity ratio coefficient
u inclined angle
b expansion coefficient
L characteristic length
T temperature
Tw surface temperature
T1 free stream temperature
U1 characteristic velocity

U velocity component along x
V velocity component along y
u; v dimensionless velocity components
h;w dimensionless temperature
X distance along the surface from the leading edge, x

dimensionless distance
Y distance normal to the surface, y dimensionless distance
w stream function,
f dimensionless stream function
sXY shear stress
Nu local Nusselt number in power law fluid
Grnx local Grashof number in power law fluid

Fig. 1. Schematic showing physical model and coordinate system of inclined
moving conveyor.
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