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a b s t r a c t

We consider the flow of low compressible liquid described by the diffusion equation, which is also
identical to the conductive heat transport, in a triple porosity medium that consists of two hierarchical
connected networks of thin fractures and isolated low permeable blocks between the fractures. We reveal
a unique parameterization of fracture thicknesses and permeabilities that ensures the contribution of all
three medium subdomains into the macroscopic behavior. Such a parameterization corresponds to a
non-selfsimilar medium.

In such a medium the main flow occurs through the large-scale fractures, the small fractures/fissures
play the role of fluid sources for large fractures, while the porous blocks play the role of fluid sources for
small fractures.

The delay in flow between different sub-domains leads to the appearance of memory in the macro-
scopic model described by the integro-differential operators. The double delay between three scales leads
to the effect of memory accumulation, in such a way that the memory kernel of the integral operators is
it-self the solution of an integro-differential cell problem. For thin fractures, the memory kernels have a
specific structure that corresponds to Abel’s type.

The macroscopic model is obtained by means of the asymptotic two-scale homogenization applied
sequentially twice. These two sequential steps are non-symmetrical. At the first scale one deals with
the problem of flow in continuous network of thin fractures/fissures surrounded by blocks, but only
the boundary layer in each block is perturbed. At the second step we homogenize the flow in the medium
that consists of large connected fractures and averaged blocks. Each averaged block contains a lot of small
fractures and small porous blocks. At this step, in contrast, the appearance of a boundary layer inside the
averaged blocks is prohibited.

This model is used to calculate flow around a producing well in an oil reservoir, in comparison with the
double porosity medium. The qualitative difference is revealed.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The typical structure of natural porous rocks represents a
hierarchical system of several fracture networks, included into
one another, having different permeabilities and apertures.
Respectively the porous blocks situated between the fractures
and isolated from each other also form a hierarchical system. Thus,
one deals with hierarchical, or multiscale media. At each scale the
characteristic heterogeneity length by the order of e (e� 1) is
small with respect to the macroscale, which gives the possibility
to neglect the details of flow at all small scales and to effectively

describe the process in terms of macroscopic models, homogenized
over all the heterogeneities.

The vuggy porous media with highly permeable or even open
fractures where the fractures are assumed to be void channels
and flow can be described by the Stokes–Brinkman equations has
been studied in [6,13]. In the case of porous fractures, flow is
described by Darcy’s law.

Frequently double-porosity model, proposed in [20], is used to
study fractured-porous media, which is not too exact. Double-
porosity model is proposed for the so-called suger cube geometry,
where blocks are not interconnected with each other and are sur-
rounded by fractures. Several studies have considered the effect of
different geometries and fracture-block arrangements on the over-
all flow. In [19], they have considered the case where global flow in
the matrix blocks plays an important role as the matrix blocks are
connected to neighboring blocks. In [14], two arrangement of a
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quadruple fractured medium was studied: when the small frac-
tures are interconnected only with medium fractures and the case
that small fractures are connected to medium and large fractures.
They have shown that the difference between the two cases are not
negligible. Semi-analytical solutions for continuously and dis-
cretely fractured reservoirs has been provided in [7,12]. They have
shown that the double-porosity media approximation cannot be
simply applied to any fractured media and the role of geometrical
parameters of the domain is not negligible which would change
the overall behavior of the system. They have shown that the thin
fractures may not participate in general flow system. The high per-
meability of fractures ensures their dominant role in the transport.
However if the fracture is very thin, then it becomes even less pen-
etrable to fluid than the low permeable blocks.

In this paper we analyze fractured-porous media, which consist
of tight porous blocks crossed by two different networks of porous
fractures, connected between them, but having different thick-
nesses, lengths and permeabilities. Each network is characterized
by a small distance between two neighboring fractures, of order
of e. The second small parameter that appears is the order of ratio
between the permeabilities of two successive media, x. The per-
meability of large fractures is expected to be higher than that of
small fractures, and the latter is much higher than the permeability
of tight blocks. The fractures are assumed to be very thin. This is
their principal difference from double-porosity media in which the
fracture aperture is of the same order as the size of a porous block.
A third small parameter is h the fracture aperture which changes
the structure of asymptotic expansions and, consequently, the
macroscale behavior. The regimes of flow depend significantly on
the ratio between the three small parameters: e;x and h [2,14,19].

It is possible to find such a ratio between the parameters e;x
and h that provides the most general types of macroscopic model.
We will call it the canonical model. For instance, in double-porosity
media, the canonical model corresponds to x ¼ e2 [5,8,9,15]. In
this case the homogenization[11] of the diffusion equation leads
to the appearance of the memory described by an integro-differen-
tial operators responsible for the mass exchange between blocks
and fractures. The memory appears due to a significant delay that
exists between the flow through a fracture and a block.

Extension of double-porosity medium to multiscale porous med-
ium which is e2 at each scale was analyzed in [10,18,17]. In [17],
the closed macroscale model was obtained for any number of
scales, including the limit model for infinite hierarchy. Such a limit
model represents two integro-differential equations whose kernel
represents the memory accumulation effects.

The canonical model for two-scale media with thin fractures
was first obtained by [2,4]. They have shown that the most general
behavior, including the memory appearance, corresponds to the
ratio x=h � e2. This is the same as x � e2þa and h � ea, with
a > 0. It was also shown that during the flow process, practically
the overall volume of each porous block remains unperturbed,
and only a thin boundary layer in each block is active just in con-
tact with the fracture. The macroscopic flow is thus determined by
thin fractures and thin boundary layer in blocks. The boundary
layer changes qualitatively the structure of Green’s functions of
the operators describing flow in a block, and the respective struc-
ture of the memory kernels in the macroscopic equations.

For three-scale media with two types of thin fractures, the
canonical model remains an open problem. The main problem of
three-scale medium consists of the memory appearance and mem-
ory accumulation at each new step of homogenization. Due to this
the flow model changes its type and form at each step. The form of
the final model is unknown a priori and cannot be predicted. The
triple-porosity medium with thin fractures was obtained in [3],
where the case of geometrically self-similar medium was analyzed,
which implies the same ratio between parameters e;x and h at

each scale. This case does not provide the most general, canonical
model, as it corresponds to a particular situation when the contri-
bution of the third scale in the macroscopic flow is very low.

In the present paper we construct the canonical model for
three-scale medium with thin fractures, which proves the most
general behavior. We apply the iterative procedure based on the
asymptotic two-scale homogenization method. First of all the cou-
ple of porous blocks and the small-scale fracture network are
homogenized. Secondly the obtained homogenized medium in
couple with the large-scale fractures is homogenized, which yields
the macroscopic flow equations. The effective cumulated memory
of the system is determined through the solution of an integro-
differential equation. We compare the results provided by the
two-scale and a three-scale model, which are in good correspon-
dence with physical meaning. In particular, during the oil recovery
from reservoir the pressure in three-scale medium should be
higher than that in two-scale medium (due to a double system of
sources which aliments large fractures).

2. Physical and mathematical formulation

2.1. Medium geometry

Let us consider a three-scale fractured medium consisting of the
system of homogeneous low permeable, non-intersecting porous
cubes X1 and the network of thin porous fractures X2;X3 as it is
shown in Fig. 1. In general case the cubes cannot be necessarily
true cubes, so we will call them ‘‘the blocks’’. We introduce the
medium eX2 as the superposition of non-intersecting blocks X1

and the fracture X2. The ratio between the linear sizes of the peri-
ods of media eX2 and X1 is a constant small value of order of e� 1.

Any fracture domain X3 is self-connected within the corre-

sponding period of the medium eX2. Moreover it is directly con-
nected to the fractures of the smaller scale X2, but has no direct
connection with the blocks X1. Physically these fractures are highly
permeable porous channels. The periods of networks X3 and X2 are
e� 1 and e2, respectively. To characterize the absolute sizes of
each medium, we introduce the main coordinate system x ¼ xð3Þ

associated with the largest network of fractures, X3. The notation

xð3Þ means a vector in R3 : xð3Þ ¼ xð3Þ1 ; xð3Þ2 ; xð3Þ3

n o
.

Along with the global system of coordinates x, we introduce two
local coordinate frames yð2Þ and yð1Þ, Fig. 1, which correspond to
two smaller scales which are defined as:

yð2Þ ¼ x
e
; yð1Þ ¼ x

e2 ð1Þ

They vary within the elementary cells Y3 [ eY 2 and Y2 [ Y1

shown in Fig. 2(a) and (b) and are defined as:

Y3 [ eY 2 ¼ �1
2
< yð2Þi <

1
2

� �
; Y2 [ Y1 ¼ �1

2
< yð1Þi <

1
2

� �
;

i ¼ 1;2;3

so that Y3 [ eY 2 is the image x # yð2Þ of the unit period of the domaineX3, while Y2 [ Y1 is the image x # yð1Þ of the unit period of the
domain eX2. The linear size of any elementary cell in local coordi-
nates is equal to 1, as shown in Fig. 2.

The half-thickness of a fracture Xi;hðiÞ is much smaller than the
period of the same fracture network, so that: where
hð3Þ � e; hð2Þ � e2, hð3Þ and hð2Þ are measured in the global coordi-
nate system x shown in Fig. 1.

2.2. Flow equations

The single-phase flow of a slightly compressible liquid in porous
medium can be described by the linear diffusion equation:
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