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a b s t r a c t

A compressible, two-phase, one-fluid solver has been developed to investigate the behaviour of cavitation
models including thermodynamic effects. The code is composed by three conservation laws for mixture
variables (mass, momentum and total energy) and a supplementary transport equation for the void ratio.
Two formulations for the mass transfer between phases are studied. Numerical simulations are firstly
performed on rarefaction cavitating problems in which the working fluid is hot water and freon R-114.
A realistic turbulent Venturi case with freon R-114 is performed and comparisons are done between
3- and 4-equation models. A warming effect is highlighted downstream the cavitation pocket in the
region of pressure recuperation.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cavitation is a significant engineering phenomenon that occurs
in fluid machinery, fuel injectors, marine propellers, nozzles,
underwater bodies, etc. In most cases, cavitation is an undesirable
phenomenon, significantly degrading performance, resulting in
reduced flow rates, lower pressure increases in pumps, load asym-
metry, vibrations, noise and erosion. Such flows are characterized
by important variations of the local Mach number (due to the dras-
tic diminution of the speed of sound in the mixture), large density
ratio between the liquid and the vapor phases, compressibility
effects and non equilibrium thermodynamic states.

Cavitation can be manifested at a constant temperature, and
thus, it is usually assumed to be an isothermal phenomenon. How-
ever, the constant temperature hypothesis is no longer valid when
cryogenic fluids (also known as thermosensitive fluids) are consid-
ered. For such fluids, the liquid–vapour density ratio is lower than
that of typical fluids (cold water) and consequently more liquid
mass has to vaporize to sustain a cavity. Therefore evaporative
cooling effects are more pronounced and the temperature of the
liquid in the immediate vicinity of the liquid–vapour interface is
depressed below the free-stream temperature. Because of the
strong variation of thermodynamic properties (vapour pressure,
density), the temperature depression, negligible in water, is quite
substantial. The local cooling effect delays the cavitation phenom-
enon and reduces the local vapour pressure of the fluid, which
leads to a lower observed cavity pressure.

Several physical and numerical models have been developed to
investigate cavitating flows within the framework of averaged
two-phase model or bubbly models based on the Rayleigh-Plesset
equation. For the averaged model, there are different approaches
according to the assumptions made on the local thermodynamic
equilibrium and the slip condition between phases. A hierarchy
of models exists, with the numbers of equations ranging from
seven to three only. The full non-equilibrium seven-equation mod-
els are the most complete. For both fluids, it contains equations for
the mass, momentum and energy, and the seventh equation
describes the topology of the flow. These models can take into
account the physical details occurring in the cavitation phenome-
non such as mass exchange, thermal transfer and surface tension.
However, the transfer terms have to be known; such quantities
are usually very difficult to obtain. Various formulations have been
investigated to deal with metastable states and evaporation front
dynamics [1–5]. Temperature and free Gibbs enthalpy exchange
terms are included in the equations as relaxation terms to model
heat and mass transfer. For thermal-hydraulics applications with
cavitation, nucleation and boiling flows, a six-equation model has
been developed [6,7]. The interfacial mass transfer is modeled as
a function of the interfacial heat transfer terms and the interfacial
phase-averaged enthalpies.

A reduced five-equation model can be derived with the assump-
tions of velocity equilibrium and pressure equilibrium. The arche-
type five-equation model is that of Kapila [8]. It is composed of four
conservation laws: two for masses, one for the mixture momentum
and one for the mixture energy. It is completed by an equation for a
non-conservative quantity describing the flow topology, usually
the void ratio. Such a model has been used for inviscid high speed
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cavitating applications and cavitation pocket in fuel injector noz-
zles [9,10]. Heat and mass transfer processes are modelled through
thermal and chemical relaxation procedures.

By assuming the thermal equilibrium between phases, a 4-equa-
tion model can be expressed. A very popular formulation, originally
developed to simulate turbulent cavitating flows in cold water, has
been adapted to cryogenic applications [11–14]. It is composed by
three conservation laws for mixture quantities (mass, momentum,
energy) plus a mass equation for the vapour or liquid density
including a cavitation source term. The main difficulty is related
to the formulation of the source term and the tunable parameters
involved for the vaporization and condensation processes (different
sets of parameters are presented in [12]). Moreover, this family of
models are not thermodynamically well-posed and does not
respect thermodynamic constraints [15]. Another popular model
devoted to ebullition problems uses a mass fraction equation with
a relaxation term (Homogeneous Relaxation Model). The source
term involves a relaxation time that is the time for the system to
regain its thermodynamic equilibrium state. This time is difficult
to determine and is estimated from experimental data [16–19].

With the assumption of complete thermodynamic equilibrium
between phases (local temperature, pressure and free Gibbs
enthalpy equality between phases), we obtain the 3-equation mod-
els or Homogeneous Equilibrium Models (HEM). Vaporization or
condensation processes are assumed to be instantaneous. An equa-
tion of state (EOS) is necessary to close the system. Different clo-
sure relations (tabulated EOS or combination of pure phase EOSs)
that link the pressure to the thermodynamic variables have been
proposed [20–24].

The bubbly flow models are composed by three balance equa-
tions for the mixture quantities coupled with a macroscopic model
for the bubble dynamics based on the Rayleigh–Plesset equation.
This model is capable of handling either single bubbles or clouds
of bubbles that grow and decrease through a pressure field [25–
27]. In the case where heat transfer is negligible, the phase change
is driven by inertia effects. Yet, when thermal effects are involved,
the liquid inertia become rapidly negligible and the evolution is
controlled by the heat flux provided by the liquid at the bubble
surface. By comparing characteristic times of thermal and inertial
phenomena, it can be shown that this thermal regime is an accu-
rate representation of reality for moderate levels of superheating
or subcooling [28–30].

In a recent study, we proposed a new mass transfer formulation
associated to a 4-equation model for isothermal cavitation [31,32].

The generic formulation involves the ratio c2=c2
wallis between the

mixture speed of sound and the Wallis velocity, which is the speed
of sound without heat and mass transfer. First, we extend the iso-
thermal formulation with a non isothermal thermodynamic path
using a linear approximation of the vapour pressure evolution. This
model is built using the mixture speed of sound evaluated with a
modified barotropic equation of state [24]. A second closure is
investigated using a mixture of stiffened gas EOS and its associated
mixture speed of sound. The validation is done through one-
dimensional inviscid double rarefaction test cases in which refer-
ence solutions have been computed [5]. A new test case is proposed
with the thermosensitive freon R-114 (C2Cl2F4) as working fluid.
Secondly, models are compared with experimental data on a turbu-
lent Venturi case in which the running fluid is freon R-114. Local
analyses with void ratio profiles and wall temperature depression
are proposed. A warming effect downstream the cavitation pocket
is exhibited.

This paper is organized as follows. We give a brief description of
models. The averaged Navier–Stokes equations are presented and
the numerical methods are described. Numerical results are pre-
sented with comparisons between models and validations against
two-fluid solutions. The study of the turbulent Venturi case is
described. Finally, conclusions and future investigations are
discussed.

2. Mixture models and mass transfer

The numerical simulations are carried out using an in-house
CFD code solving the one-fluid compressible Euler and Navier–
Stokes systems.

The homogeneous mixture approach is used to model two-
phase flows. The phases are assumed to be sufficiently well mixed
and the disperse particle size are sufficiently small thereby elimi-
nating any significant relative motion. The phases are strongly cou-
pled and moving at the same velocity. In addition, the phases are
assumed to be in thermal and mechanical equilibrium: they share
the same temperature T and the same pressure P. The evolution of
the two-phase flow can be described by the conservation laws that
employ the representative flow properties as unknowns just as in a
single-phase problem.

We introduce a the void fraction or the averaged fraction of
presence of the vapour. The density q, the center of mass velocity
u and the internal energy e for the mixture are defined by Ishii and
Hibiki [33]:

Nomenclature

B B-factor
c speed of sound
Cp; Cv thermal capacities
E total energy
e internal energy
g free Gibbs enthalpy
h enthalpy
Lvap latent heat of vaporization
_m mass transfer between phases

P static pressure
Pvap vapour pressure
P1 reference pressure
Pr ; Prt molecular and turbulent Prandtl numbers
Q total heat flux
q energy of formation
ReL Reynolds number based on the length L
T temperature

Tref reference temperature
u; v velocity components
w conservative variables
Y mass fraction of gas
a volume fraction of gas
c ratio of thermal capacities
k; kt molecular and turbulent thermal conductivity
l;lt molecular and eddy viscosity
q density
r cavitation number
s total stress tensor
ðÞl liquid value
ðÞv vapour value
ðÞsat saturation value
ðÞv viscous
ðÞt turbulent
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