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a b s t r a c t

The aim of this paper is to propose a strategy for performing a stability enhancement into the Explicit
Green’s Approach (ExGA) method applied to the bioheat transfer equation. The ExGA method is a
time-stepping technique that uses numerical Green’s functions in the time domain; these functions
are here computed by the FEM. Basically, a new two nonequal time substeps procedure is proposed to
compute Green’s functions at the first time step. This is accomplished by adopting the standard explicit
Euler scheme and an optimized procedure to yield the best stability constraint, allowing a reduction into
the number of time steps without loss of accuracy. In addition, the concept of local numerical Green’s
functions is introduced and explored aiming at reducing the computational effort of nodal Green’s
functions calculation. Two examples are presented in order to show the potentialities of the proposed
methodology, one to illustrate the accuracy and another applied to skin burn simulations.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there has been an increasing motivation in the
development of mathematical models that describe heat transfer
in living tissue with blood perfusion. Among many mathematical
models of bioheat transfer [1,2], the Pennes’ equation [3] is widely
employed due to its simplicity and overall satisfactory representa-
tion of the physical phenomenon. Indeed, the Pennes’ equation
appears in a great number of bioheat applications such as hyper-
thermia, cryosurgery, hypothermia, thermography, skin burns, etc.

As the mathematical models and their applications in medical
sciences are becoming more complex and multidisciplinary [1,2],
numerical simulations are indispensible tools that partially replace
laboratory testing, aiding in understanding the problem under con-
sideration subjected to different inputs in an effective manner. In
fact, over the years, the Pennes’ bioheat transfer equation has been
numerically solved by several numerical techniques such as the
finite difference method [1,4–6], finite element method [1,7,8],
boundary element method [9,10], meshless method [11,12] etc.

The objective of the present paper is to propose an improve-
ment into the Explicit Green’s Approach method [13–17] and apply

it to solve the Pennes’ equation. As an application of the Pennes’
equation, the paper focuses on the numerical simulation of skin
burns [1,6–8,22] that can be used to predict injury depths caused
by different external heat supplies applied at the skin surface.
The generality and success of the ExGA method relies heavily on
numerical Green’s functions rather than analytical ones employed
in other formulations. It is well-known that Green’s function meth-
odologies are very powerful tools due to the ability to solve the
problem under consideration subjected to different boundary con-
ditions and heat source terms [18–24]. For instance, one can quote
the work of Deng and Liu [19] where analytical Green’s functions
for the Pennes’ equation that satisfy the homogeneous boundary
conditions of the same problem were employed. However, these
analytical Green’s functions, even though very important to derive
benchmark solutions, are not feasible in practice due to the diffi-
culty of finding analytical expressions for Green’s functions with
arbitrary geometries and/or material properties. In this sense, the
ExGA uses numerical Green’s functions that also satisfy homoge-
neous boundary conditions, giving rise to a general time-integral
expression that can easily handle any kind of geometry and med-
ium. Furthermore, unlike time-domain BEM formulations in which
analytical free-space Green’s functions are generally employed
[25,26], once Green’s functions are computed in the ExGA method
the solution is explicitly evaluated without the need of solving a
system of equations.
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The main contributions of the present paper are the proposed
use and optimization of a new nonequal two time substeps proce-
dure to compute Green’s functions at the first time step, a detailed
discussion on the computation of local numerical Green’s functions
and a convergence analysis of the technique. The FEM in conjunc-
tion with the explicit Euler scheme are employed to compute
Green’s functions, represented by the so-called Green’s matrix that
stores numerical nodal values of the Green’s functions. The non-
equal time substeps values are calculated such that a maximum
stability region for the time-integral expression of the ExGA
method is achieved. Because of the discretization adopted, the
numerical Green’s function due to a point source possesses a com-
pact support with values different from zero only in a small region
around the source point and, as a consequence, its computation
can be carried out locally in a straightforward manner.

The structure of the paper is organized as follows: in Section 2
the Pennes’ bioheat transfer equation is briefly described and, in
Section 3, a brief background is given on the theoretical founda-
tions of the time-integral expression regarding the ExGA method
discretized in a FEM sense. Section 4 presents the time substeps
procedure to compute the Green’s matrix by means of the explicit
Euler scheme and a discussion about the convolution integral.
Next, in Section 5, a detailed study of how to calculate the time
substeps values by performing a stability and accuracy analysis is
provided. In Section 6, two numerical examples are presented in
order to assess the capabilities and potentialities of the improved
ExGA method, including a convergence study and a simulation of
skin burns caused by a heated plate. Finally, conclusions on the
proposed methodology are drawn in Section 7.

2. Model equations

In this work, biological systems, more specifically skin tissue
subjected to external factors leading to burns, are modeled by
means of the Pennes bioheat transfer equation. Let the biological
system (skin tissue) occupy an open and bounded domain X � Rd

where d is the order of space dimensions. The boundary of
X is assumed to be sufficiently smooth and is denoted by C = oX
with outward unit normal vector n, �X ¼ X [ C being the closure
of X. In this way, the Pennes’ bioheat transfer model can be formu-
lated as: find the tissue temperature field T : �X� ½0; tf � ! R such
that [1–3]:

r � ðjrTÞ þxbqbcbðTa � TÞ þ Q m þ Qr

¼ qc
@T
@t

in X� ð0; tf � ð1Þ

T ¼ �T on CD � ð0; tf � ð2Þ

jrT � n ¼ �q on CN � ð0; tf � ð3Þ

jrT � n ¼ hðT1 � TÞ on CR � ð0; tf � ð4Þ

T ¼ T0 in X at t ¼ 0 ð5Þ

where the usual Dirichlet, Neumann and Robin (convective) type
boundary conditions with their respective prescribed values and
parameters are applied on CD, CN and CR, respectively, such that
C = CD [ CN [ CR and CD \ CN ¼ CD \ CR ¼ CN \ CR ¼£. In Eq. (1),
Ta stands for the arterial temperature which is treated as a constant,
Qm : X! R and Qr : X� ½0; tf � ! R denote the metabolic heat gen-
eration and the supplied heat source, respectively. The tissue prop-
erties are: j : �X! Rd�d the thermal conductivity tensor, q : X! R

the density and c : X! R the specific heat while the blood proper-
ties are:qb : X! R, cb : X! R and xb : X! R the blood perfusion.
Finally, T0 : X! R is the initial temperature field.

Due to the lack of a precise knowledge of the initial temperature
in the whole biological system adopted in the model, in many
numerical simulations the initial temperature T0(x) is set as the
solution of a previous steady-state problem governed by the equa-
tion below

r � ðjrT0Þ þxbqbcbðTa � T0Þ þ Q m ¼ 0 in X ð6Þ

subjected to appropriate boundary conditions. For instance, in skin
burns simulations, the initial temperature may be accomplished by
considering that the skin surface is under a convective boundary
condition, a situation normally encountered previous to the heating
that causes burns.

3. Time stepping using the Green’s matrix

The key feature of the ExGA method is the use of numerical
Green’s functions that satisfy homogeneous boundary conditions
of the problem under consideration. Hence, according to

Nomenclature

c specific heat (J kg�10 C�1)
F(t) external heat load vector
G(t) Green’s matrix
G(x, y, t � s) Green’s function
I identity matrix
K conductivity matrix
ML lumped capacity matrix
nq number of equations
Qm metabolic heat of tissue (W m�3)
Qr spatial heating (W m�3)
t time (s)
tf time of analysis
Ta arterial temperature
T(t) time temperature vector

Greek symbols
Xh discrete domain
Xh

Gj
discrete local domain around yj

aiDt substeps
k eigenvalue
Dt time step
xb blood perfusion (s�1)
j thermal conductivity tensor (W m�10 C�1)
W tissue damage
q density (Kg m�3)
s time (or dummy) variable (s)

Superscript
k time index

Subscript
b blood
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