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a b s t r a c t

In this paper, we focused on a drop-size distribution density, which is one of the important components
in the dropwise condensation theory. With an aim of quantitatively clarifying the characteristic of drop-
size distribution density in reference to the existing models, the time-series characteristics and geometric
structures of drop-size distribution densities in a set of processes of dropwise condensation (i.e. nucle-
ation, growth, coalescence and departure) had been experimentally clarified by the developed image pro-
cessing technique. In addition, applicability of existing models of the time-averaged drop-size
distribution densities had been verified. Furthermore, the time-series fraction of surface coverage by
drops, which is closely related to the drop-size distribution density, had been elucidated in terms of frac-
tal geometry theory.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Condensation modes are roughly divided into two categories of
dropwise condensation and filmwise condensation. It is said that
the heat transfer coefficient for dropwise condensation of steam
is approximately 15–20 times higher than that for filmwise con-
densation. For this reason, high-performance heat transfer tubes,
which surfaces are mechanically processed in millimeters, are
designed so that condensate films are actively removed from the
surfaces to promote dropwise condensation. With recent techno-
logical innovations, various mechanical and chemical treatments
in micrometers or nanometers in the surface are possible.

When the structure and chemical composition of the surface
become more complicated, it is to be expected that the dynamic
behavior of dropwise condensation also become complex. There-
fore, it is necessary to take into consideration of the dynamic char-
acteristics for an accurate evaluation of the heat transfer
performance on dropwise condensation. A lot of studies had been
made on dropwise condensation [1–6]. According to the theory
proposed by Tanaka [7–10], it is found that dropwise condensation
is closely related to the following three dynamic characteristics:
(1) drop-size distribution density, (2) substantial growth rates of
drops by condensation, and (3) growth rates of drops by condensa-
tion accompanied with the coalescence.

In this paper, we focused on drop-size distribution density. The
time-series characteristics and geometric structures of drop-size
distribution densities of dropwise condensation had been experi-
mentally investigated. Hereinafter, past studies on the drop-size
distribution density of dropwise condensation will be introduced.

1.1. Existing model for drop-size distribution density

Le Fevre and Rose [11] introduced a concept of drop-size distri-
bution density for the first time in theoretical studies on dropwise
condensation in 1966. After they carried out their own studies,
many researchers have been theoretically and empirically studied
on the drop-size distribution density. The representative existing
models for dropwise condensation density are listed in Table 1.
Each of models will be introduced in the following section.

1.1.1. Le Fevre and Rose model (theoretical)
From photographic observation of dropwise condensation, Le

Fevre and Rose assumed that the fraction of surface coverage by
drops having radii greater than r to the largest r̂ could be expressed
in the form of the Eq. (3). This was based on the fact that geomet-
rically-similar structures of drop distribution on the surface were
constantly seen from the photos at any multiple of magnification.
The concept of geometrically-similar structure was generalized
and defined as ‘‘fractal’’ later by Mandelbrot in 1977 [12]. Since
that time up to now it was applied in the various scientific research
fields. If a drop was assumed as hemispherical shape, then the
drop-size distribution density could be derived as Eq. (1) from
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Eq. (3). It is clear from Eq. (1) that the drop-size distribution den-
sity is expressed in power-law as a function of drop radius. Le Favre
and Rose derived a specific conclusion of n = 3 about the power
index of drop radius by comparing the experimental results. In case
of n = 3, the drop-size distribution density is approximately
expressed as Eq. (2).

1.1.2. Rose and Glicksman model (theoretical)
Rose and Glicksman [13] derived a theoretical drop-size distri-

bution density (Eq. (5)) by modeling a growth cycle for each gener-
ation of drops. The typical growth cycle for the first three
generations (i = 0,1,2) of drops, proposed by Rose and Glicksman,
is shown in Fig. 1. In the model, they introduced two important
parameters, (1) the ratio c between the maximum radius of any
generation r̂iþ1 and the radius of its immediate predecessor ri, at
the instant, (i.e. c ¼ r̂iþ1=ri) and (2) the fraction of surface coverage
by drops f at any generations. In this regard, they assumed that
both parameters and the growth rates of drops were kept constant
at any generations of drops. In addition, the sweeping was induced
in the period of s. It can be clearly observed from the figure that the
structure of growth cycle for each generation of drops has a fractal
characteristic. As a result of computational simulation of the model
under an assumption that the configurations of drops in each

generation were an equilateral triangle array, they derived
c = 0.189 and f = 0.55, respectively. In addition, Rose and Glicksman
proposed an approximate equation (Eq. (6)) of above-mentioned
drop-size distribution density (Eq. (5)). According to Eq. (6), the
power index of drop radius (�2.618) shows an excellent consis-
tency with that by Le Fevre and Rose (�2.667).

1.1.3. Tanaka model (theoretical)
To investigate time-series characteristics of a drop-size distri-

bution density and a fraction of surface coverage by drops, Tanaka
numerically solved the following two equations: (i) the equation
on number variation by nucleation, coalescence, and departing
and (ii) the equation on volumetric increment of drops by coales-
cence, using the theoretical equation of substantial growth rates
of drops by Fatica [14]. As a result, Tanaka clarified that not only
the time-series drop-size distribution density but also the time-
series fraction of surface coverage by drops formed similar solu-
tions soon after dropwise condensation process was started in
completely swept surface, irrespective of the initial drop-size dis-
tribution density. In addition, Tanaka derived Eqs. (7) and (8) as
similar solutions of the time-series drop-size distribution density
and the time-series fraction of surface coverage by drops having
radii from r to an instantaneous effective maximum drop radius

Nomenclature

B(S) cumulative number of drops covered by the box with
length of S

CSD(rc,x) cross spectral density between Nc(rc, t) and Nc

(rc + Dr, t), s/mm6

Cth threshold value of brightness for binarization
Ci,j normalized value of brightness at each pixel point

(i, j) in an image
D spacing between nucleation sites
Df self-similarity fractal dimension
Df5(t) instantaneous self-similarity fractal dimension evalu-

ated by box-counting method under the scaling region
of 1 6 S 6 16 pixels

Df 5 time-averaged value of Df5(t)
Df10(t) instantaneous self-similarity fractal dimension evalu-

ated by box-counting method under the scaling region
of 1 6 S 6 512 pixels

Df 10 time-averaged value of Df10(t)
Da statistical self-similarity fractal dimension
E[x] ensemble average of x
f(t) instantaneous fraction of surface coverage by drops
fc(rc, t) instantaneous fraction of surface coverage by drops
f time averaged value of f(t)
Df(t,Dt) change in the instantaneous fraction of surface coverage

by drops in the time interval of Dt
h dropwise condensation heat transfer coefficient,

kW/m2 K
H Hurst exponent
N drop-size distribution density, /mm2/mm
N time-averaged of N, /mm2/mm
Nc(rc, t) instantaneous drop number density at representative

drop radius rc, /mm2/mm
Nc time average of Nc(rc, t), /mm2/mm
P1 steam-air mixture pressure, kPa
Ps partial pressure of steam, kPa
PSDf(t)(x) power spectral density of f(t), s
PSDNc ðrc;xÞ power spectral density function of Nc(rc, t), s/mm6

q00 dropwise condensation heat flux, kW/m2

r drop radius, mm

rim equivalent drop radius of torus-shaped pixelated object,
mm

rc representative drop radius, mm
rc,min minimum representative drop radius, mm
rc,max maximum representative drop radius, mm
Dr radius interval, mm
rmax(t) instantaneous maximum drop radius in the inspection

area, mm
rmax time-averaged value of rmax(t) at each measurement,

mm
rmax maximum value of rmax(t) at each measurement, mm
Rmax departing drop radius, mm
S box length, pixel
t time, s
Dt time interval, s
T temperature, �C
Tw surface temperature, �C
T1 bulk temperature of steam-air mixture, �C
DT surface subcooling temperature, T1 � Tw, K
X air molar concentration in steam–air mixture, %

Greek symbols
�aðrÞ time-averaged fraction of surface coverage by drops

having radii larger than r
/5(t) instantaneous fraction of surface coverage by drops

evaluated by Df5(t) based on Eq. (13)
/5 time averaged value of /5(t)
/10(t) instantaneous fraction of surface coverage by drops

evaluated by Df10(t) based on Eq. (13)
/10 time averaged value of /10(t)
h(rc,x) PSDNc ðrc;xÞ; rad
hc(rc,x) phase of the cross spectral density of CSD(rc,x), rad
sc(rc) time-averaged propagation time between two

dominant peaks between Nc(rc, t) and Nc(rc + Dr, t), s
x frequency, Hz
xcr(rc) frequency that CSD(rc,x) takes maximum value, Hz
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