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a b s t r a c t

A new complex-variable formalism for the analysis of three-dimensional (3D) steady-state heat transfer
problems in homogeneous solids with general anisotropic behaviour is proposed in this paper. The
derived method is based on the Radon transform, which is used in order to reduce the dimension of
the problem to a two-dimensional (2D) Radon space where a solution can be easily handled via a
complex-variable method. Subsequently, the 3D solution is obtained by applying the inverse Radon
transform. Despite that the main goal of this work is to develop and illustrate the general methodology,
the proposed formalism is further applied to derive new Green’s functions as application examples. Con-
tributions include new forms for bimaterial and half-space Green’s functions for line, point, vortex and
dipole heat sources. In particular Green’s functions due to heat vortex loop sources for infinite media,
half-space and bimaterial systems are presented for the first time. The veracity and computability of
the approach are demonstrated with some numerical examples.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Many of the current applications in various branches of science
and engineering use materials which exhibit anisotropic proper-
ties. Even for materials with overall isotropic response, in the cur-
rent trend for the study of multiscale related problems, the
incorporation of anisotropic features of their microconstituents is
many times required. But anisotropy makes the differential opera-
tor of the governing equations more complicated than the well
known isotropic case, mainly when cross-derivatives are involved
[1]. This is particularly true for three-dimensional (3D) problems
where the number of solutions is considerably minor than their
corresponding two-dimensional (2D) case. This work is concerned
with anisotropic or isotropic steady-state heat transfer problems,
both 3D and 2D.

Most of the literature for anisotropic heat transfer phenomena
is related to the coupled thermoelastic problem and restricted to
2D. Certainly the research devised for example by Clements [2],
Wu [3], Sturla and Barber [4], Hwu [5], Yeh et al. [6] and Kattis

et al. [7] deserve to be mentioned. These works may be considered
as an extension of the Stroh formalism for elasticity to themoelas-
ticity. Regarding the pure thermal problem, Chang et al. [8] present
2D and 3D closed-form fundamental solutions and; based on these
solutions they solve the problem in a square, a circular disk, and an
annular disk by using an integral-equation method. Employing
Fourier transform Chang [9] derives steady and unsteady analytic
Green’s functions for a heat source in full-space (closed-form), half
space (closed-form for 2D and integral-form for 3D), and infinite
slab (series solution). Berger et al. also use Fourier transform to
derive Green’s functions due to a heat source for 2D bimaterial
[10] and 2D and 3D functionally graded materials [11].

Complex-variable methods have also been used which dispense
with performing inverse transforms. For instance Shen et al. [12]
propose a series-form solution for the trimaterial system combin-
ing a 2D complex-variable method and analytic continuation. Such
complex-variable methods are derived from thermoelastic studies
(for instance the mentioned works [2–7]) and they are exclusively
for 2D problems.

Alternative techniques use coordinate transformations which
map the original problem with some particular material symme-
tries into an equivalent isotropic one. They have been widely used
(see e.g. [13–17]), but they become quite cumbersome for
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multi-material problems [18], and the boundary conditions in
problems involving several interfaces are not easy to handle.

As mentioned, for the 3D anisotropic case the works available in
literature are limited. In addition to the already mentioned works
by Chang et al. [8,9] and Berger et al. [11]; Mulholland and Gupta
[19] investigated a procedure to solve arbitrary shape solids by
using coordinate transformations to principal axes. Yen and Beck
[20] use the Green’s function to study the 3D problem in two-lay-
ered composite. The proposed solution results in double series in
terms of eigenfunctions in two of the three directions. Recently,
in the work by Marczak and Denda [21], a comprehensive review
on full-space Green’s functions (fundamental solutions) has been
presented. In that work, 3D infinite Green’s functions are derived
by using the Radon transform in order to reduce the problem to
a one-dimension.

The domain-mapping techniques have been applied together
numerical procedures like Boundary Element Methods (BEM)
[22–25]; allowing to use schemes developed for isotropic materi-
als. However simple and robust anisotropic Green’s functions are
welcome for the development of powerful boundary integral for-
mulations and meshless methods [26–28].

Most of the above works study the temperature field when a
heat (line or point) source is applied to the corresponding geom-
etry domain. But another kind of sources can be possible. For
potential problems, the concept of the field produced by a con-
stant discontinuity of the potential field in a simple or double
(dipole) layer appeared in literature several decades ago [29].
In the context of heat phenomena, the term heat vortex for a
constant layer discontinuity in the temperature field has been
introduced by Dundurs and Comninou [30]; and has been stud-
ied by Sturla and Barber [4] for anisotropic materials. Full-space,
half-space and bimaterial Green’s functions for heat lines and
vortex could be obtained by analogy with the antiplane elastic
problem [31] and corresponding dipole solutions could be
derived by applying the limit procedure as described herein.
However these Green’s functions have not been found in our lit-
erature review. Furthermore, for solutions related to discontinu-
ities in 3D there is a lack of studies considering different kind of
sources, being this subject very important for the development
of indirect BEM formulations.

The main goal of this work is to present a new complex-variable
formalism for the analysis of general 3D anisotropic steady-state

heat transfer problems based on a combination of Radon trans-
form and ideas from Stroh formalism. Since Green’s functions play
a fundamental role in finding partial differential equation solutions
it is also the aim of this work to apply the derived methodology to
obtain various 3D and 2D Green’s functions. In order to illustrate
the potential and validity of our approach Green’s functions for
some problems already analysed by other authors are first pre-
sented in a unified fashion. Subsequently the method is applied
to derive new Green’s functions not available into the scientific lit-
erature. In particular new 3D Green’s functions for heat vortex
loops in full-space, half-space and bimaterials.

The paper is outlined as follows. In Section 2, the detailed the-
ory for 3D anisotropic heat transfer is derived. In this section, a 2D
general solution is also introduced as a particularization of the
well-known (vectorial-field) complex-variable Stroh formalism
for anisotropic elasticity to the scalar-field elliptical problem that
concerns us. The derived formalism is applied to obtain Green’s
functions for several kinds of singularities in Section 3. Validation
and numerical results are presented in Section 4. The paper closes
with a summary of the theory and concluding remarks in Section 5.

2. Theory of anisotropic heat transfer

2.1. Reduction of 3D Laplacian operator to a 2D Radon space operator

Along the paper, it is assumed that Greek subindices range from
1 to 2 and Latin subindices from 1 to 3; moreover, repeated indices
imply summation. The differential operator @i :¼ @

@xi
is preferen-

tially used; while the symbols @p and @s are reserved for @
@p and @

@s,

respectively. Consider a function f ðxÞ defined in a ðxiÞ (i ¼ 1;2;3)
Cartesian coordinate system in 3D. For the fixed value x3, the 2D
Radon transform in the plane with normal x3 is defined by (see
Appendix A, and references [32–34] for further details)

�f ðn; p; x3Þ :¼
Z

n�x¼p
f ðxÞdSx; ð1Þ

where n ¼ ðn1; n2;0ÞT , with T denoting transpose, is a unit vector
and Sx is a line perpendicular to n located at a (signed) distance p
from the origin in the plane with normal x3. Sometimes, the opera-
tor Rð�Þ defined by �f ¼ Rðf Þ is also herein used to refer this
transform.

Nomenclature

ðx1; x2; x3Þ; ðs; p; x3Þ Cartesian coordinate systems
ðn;m; êÞ right-handed orthonormal triad
@i (i = 1,2,3) differential operator @

@xi

@s; @p differential operator @
@s ;

@
@p

�f ;Rðf Þ Radon transform of the function f
Sx line
Lð@xÞ anisotropic differential operator
u temperature
v potential function
kij components of thermal diffusion tensor
qi components of heat flux
Q ;R; T real scalars
h angle
i imaginary number
A;B;C;D; k;j complex scalars
Ki; ni;li components of complex vectors
�x vector
N matrix
w holomorphic function

�z conjugate of number z
wðzÞ ¼ wð�zÞ conjugate functionR
-- Cauchy principal value
Bð�Þ Backprojection integral operator
Hðf ðpÞ; p! tÞ Hilbert transform of the function f
~f ðtÞ :¼ � 1

4pHð@pf ðpÞ; p! tÞ
Rð�Þ real part
Ið�Þ imaginary part
dð�Þ Dirac delta function
dij delta de Kronecker
_f first-order derivatives of f with respect to its argument
€f second-order derivatives of f with respect to its argu-

ment
x field point
x0 source point
g; f spatial vectors
sgnðaÞ 1 if a > 0 and �1 if a < 0
UHP upper half-plane
LHP lower half-plane
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