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a b s t r a c t

In this work, the effects of aspect ratio and shear-dependent viscosity on the laminar free convection heat
transfer from a heated spheroid immersed in unbounded quiescent power-law fluids have been investi-
gated. In particular, the coupled momentum and energy equations have been solved numerically over the
following ranges of the pertinent governing parameters: Grashof number, 10 6 Gr 6 105; Prandtl num-
ber, 0:72 6 Pr 6 100; power-law index, 0:3 6 n 6 1:5 and aspect ratio, 0:2 6 e 6 5. Detailed structures
of the flow and temperature fields in the vicinity of the spheroid are visualized in terms of the streamline
and isotherm patterns, whereas the gross flow and heat transfer phenomena are resolved in terms of the
local Nusselt number and its surface averaged value and drag coefficient (CD). Broadly speaking, shear-
thinning fluid behaviour (n < 1) facilitates heat transfer whereas shear-thickening (n > 1) impedes it in
comparison to that seen in Newtonian fluids (n = 1) under otherwise identical conditions. At fixed values
of the Grashof number (Gr), Prandtl number (Pr) and power-law index (n), the value of Nusselt number
gradually increases as the spheroid shape progressively passes from the oblate (e > 1) to the prolate
(e < 1) configurations via the spherical shape (e = 1). The reverse trend occurs, however, for the drag coef-
ficient (CD). Finally, the present values of the average Nusselt number and drag coefficient are correlated
using a simple analytical form based on a general composite parameter proposed for power-law fluids.
The paper is concluded by presenting some comparisons with the limited previous analytical and exper-
imental results available in the literature which are limited to Newtonian fluids.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Current interest in studying free convection heat transfer from
various objects of two-dimensional (such as long cylinders of cir-
cular and non-circular cross-section) and three-dimensional
(spheres, hemispheres and spheroids) shapes immersed in
quiescent fluids stems both from fundamental and pragmatic con-
siderations. From a theoretical standpoint, since in this regime, the
motion is caused solely by the temperature-dependent density, not
only the momentum and energy equations are coupled, the shape
and orientation of the object also exert a significant influence on
the resulting flow and temperature patterns in the close proximity
of the object which eventually impact on the rate of heat transfer.
Similarly, reliable values of the convective heat transfer coefficient
are frequently needed in the sizing of process equipment entailing

the heating/cooling of slurries, melting of polymeric melts, food
processing applications, etc. Since in most real-life engineering
applications, heat transfer occurs in the so-called mixed convection
regime, the overall heat transfer draws varying contributions from
the free- and forced-convection mechanisms. The relative impor-
tance of the two contributions is governed by the value of the
familiar Richardson number, Ri, defined as the ratio of the Grashof
number (Gr) and Reynolds number (Re) as Ri = Gr/Re2. Thus, the
two limiting cases of Ri ? 0 and Ri ?1 correspond to the pure
forced- and free-convection regimes respectively. Naturally, as
the value of the Reynolds number is reduced, as is the case for
viscous Newtonian and non-Newtonian fluids, the importance of
free convection progressively increases.

In view of the preceding discussion, over the years, significant
research effort has been expended in studying free convection heat
transfer from variously shaped single and multiple objects in New-
tonian fluids like air and water. The bulk of the literature in this
field has been summarized, amongst others by Jaluria et al. [1,2],
Martynenko and Khramstov [3], Fand et al. [4,5], Churchill and
co-workers [6,7], Morgan [8] and more recently by Eslami and
co-workers [9]. An examination of the available literature reveals
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that the case of a sphere and a circular cylinder in various config-
urations have occupied the centre stage, followed by elliptical cyl-
inders and other two-dimensional shapes like bars of square and
non-square cross-sections [10,11] in Newtonian fluids. In contrast,
many food-stuffs, catalyst particles, polymeric and pharmaceutical
and agricultural products are of granular form but not necessarily
spherical in shape. Undoubtedly, the study of free convection from
a sphere has yielded valuable insights not only about the underly-
ing processes but also about the different flow regimes and transi-
tions from one regime to another. Consequently, a wealth of
information is now available on this subject as far as a sphere in
Newtonian media is concerned. On the other hand, the use of sphe-
roidal-shaped objects affords the possibility of delineating the
influence of shape and orientation on free convection heat transfer
by simply varying the aspect ratio of a spheroid. Indeed, there has
been a spurt in studying momentum and heat transfer characteris-
tics of heated spheroidal particles in confined [12,13], unconfined
[14], Newtonian [15–21] and power-law fluids [22–24]. However,
most of these are restricted to the forced convection regime in
the steady flow region except for the unsteady case considered
by Juncu [15].

In contrast, very little is known about the free convection heat
transfer from spheroidal particles, even in Newtonian fluids,
let alone in power-law fluids. Most of the developments in this
area are based on the approximate boundary layer analysis aided
by dimensional considerations. Thus, for instance, Raithby et al.
[25,26] reported experimental results on the average Nusselt num-
ber from spheroids in air and they found it necessary to incorpo-
rate the curvature effects (often ignored in boundary layer
treatments) and/or to account for turbulence to obtain satisfactory

match between their data and predictions. Similarly, based on
experimental results, Yovanovich and co-workers [27–29] have
attempted to identify a characteristic linear dimension for spher-
oids, cubes, cones, two spheres joined together in an endeavour
to consolidate the average Nusselt number results for scores of
shapes. For instance, Yovanovich [28] has argued that the use offfiffiffi

A
p

(where A is the surface area available for heat transfer) as the
characteristic linear dimension in the definitions of the Nusselt
and Grashof numbers does lead to unification of the experimental
data for a range of shapes. They have attempted to fit the following
generic form of expression:

Nu ffiffi
A
p ¼ Nu1ffiffiAp þ FðPrÞG ffiffi

A
p Ra1=4ffiffi

A
p ð1Þ

In Eq. (1), Nu1ffiffiAp is the conduction limit ðRa ffiffi
A
p ! 0Þ and indeed it

turns out to be only a weak function of body shape. For example,
the value of Nu1ffiffiAp ranges from 3.545 for a sphere to 3.39 for cubes,
3.44 for horizontal and vertical cylinders, 3.34–3.57 for prolates
and oblates. Undoubtedly, this level of consolidation is quite
acceptable in process engineering calculations. Now retuning to
the second term on right hand side of Eq. (1), in most instances,
experiments are often performed in air (i.e., fixed value of
Pr = 0.70 or so), the function F(Pr) is introduced here to generalize
the results to the other values of Prandtl number. The following
form due to Churchill and Churchill [6] has gained wide acceptance
in the literature hence Yovanovich and co-workers also [27–29]
recommended it:

FðPrÞ ¼ 0:670

1þ 0:492
Pr

� �9=16
h i4=9 ð2Þ

Nomenclature

A surface area, m2

a semi-axis normal to the direction of gravity, m
b semi-axis along the direction of gravity, m
e aspect ratio, ð¼ a=bÞ, dimensionless
CD total drag coefficient, CD ¼ 2FD

q1U2
c pb2 , dimensionless

CDP pressure component of drag coefficient, CDP ¼ 2FDP

q1U2
c pb2 ,

dimensionless
C thermal heat capacity of fluid, J kg�1 K�1

D1 diameter of the outer domain, m
FD total drag force, N
FDP pressure component of drag force, N
g acceleration due to gravity, m s�2

Gr Grashof number based on the length scale of 2b, dimen-
sionless

Grb Grashof number based on the length scale of b, dimen-
sionless

h heat transfer coefficient, W m�2 K�1

I2 second invariant of the rate of strain tensor, s�2

k thermal conductivity of fluid, W m�1 K�1

m power-law consistency index, Pa.sn

n power-law index, dimensionless
ns unit normal vector
Nu average Nusselt number based on the characteristic

length of 2b, dimensionless
Nu2a average Nusselt number based on the characteristic

length of 2a, dimensionless
Nu ffiffiffi

A
p average Nusselt number based on

ffiffiffi
A
p

as the length
scale, dimensionless

Nu h local Nusselt number, dimensionless
Nu1 conduction limit of the Nusselt number, dimensionless
P pressure, dimensionless

Pr Prandtl number based on the characteristic length of 2b,
dimensionless

Prb Prandtl number based on the length b, dimensionless
Ra Rayleigh number based on the length scale of 2b,

dimensionless
Ra2a Rayleigh number based on the length scale of 2a,

dimensionless
Ra ffiffiffi

A
p Rayleigh number based on

ffiffiffi
A
p

, dimensionless
T temperature, K
DT temperature difference (=TW � T1), K
U velocity vector, dimensionless
Uc characteristic or reference velocity, m s�1

UX, UY x- and y-components of the velocity, dimensionless
X, Y Cartesian coordinates, dimensionless

List of Greek symbols
b coefficient of volume expansion, K�1

d distance between two grid points on spheroid surface, m
e components of the rate of strain tensor, s�1

q density of fluid at temperature T, kg m�3

n non-dimensional temperature, dimensionless
s extra stress tensor, Pa
h location on the surface of the spheroid, degree
w surface contour, m
r Del operator, dimensionless

Subscripts
w spheroid surface condition
1 corresponds to far away condition
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