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a b s t r a c t

A mathematical study of heat and flow of couple stress MHD fluids over permeable stretching/shrinking
surfaces is undertaken in the present paper. Exact solutions for both flow and temperature fields under a
boundary layer approach are targeted. In the absence of couple stress field the results completely collapse
onto the special cases available in the literature. Obtained closed form solutions provide valuable knowl-
edge for the velocity and temperature profiles as well as skin friction coefficient and Nusselt number. Dis-
similar to the already known for a noncouple Newtonian fluid, double solutions exist over a stretching
sheet, and triple solutions are present over a shrinking sheet, if couple stress effects are taken into
consideration.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Pursuing the pioneering studies of Sakiadis [3] and Crane [4],
the flow over continuously stretching or shrinking surfaces and
its numerous physical features have been investigated by many
researchers, amongst them are [5–10,1,11,2]. The significance
of this problem arises from many real life applications, such as
polymer extrusion, drawing of plastic films and wires, glass fiber
and paper production, manufacture of foods, crystal growing,
cooling of metallic plate in a bath, liquid films in condensation
process, etc., see Fisher [12]. The present work is also devoted
to stretching or shrinking sheet problems, but when the bound-
ary layer flow evolves in accordance with the model of couple
stress fluid.

Couple stress fluid theory is just generalization of the classical
Newtonian theory of fluids permitting polar effects such as the
presence of couple stresses and body couples, see [13,14]. One
similar theory was also suggested in [15]. Apart from the practical
applications in the field of biomechanics and in the fluid models
of the mixture of Newtonian and non-Newtonian immiscible flu-
ids, petroleum and chemical industries, geohydrology, extraction
of geothermal energy and medicine are a few well-studied prob-
lems concerning couple stress fluids having technological impor-

tance. When blood is represented by a couple stress fluid model,
the effects of an axially symmetric mild stenosis on the flow of
blood were examined in [16,17]. In a series of work, [18,19] inves-
tigated rotor bearing system when the bearings are lubricated
with couple stress fluid. A similar work was implemented in
[20] when the journal bearings are further influenced by surface
roughness. [21] considered the effect of induced magnetic field
over peristaltic flow of a couple stress fluid occurring in an asym-
metric channel. An approximate closed from solution was recently
presented in [22] for the partial journal bearings with couple
stress fluids.

Motivated by the aforementioned importance of couple stress
fluids, the flow and heat transfer analysis are the essential ingredi-
ents of the current study, when the motion of the fluid takes place
along stretching or shrinking surfaces. The aim is to obtain exact
closed form solutions of the physical model accounting for the per-
meability as well as MHD effects. Such type of analysis for regular
fluids was already given in [23–26]. Quite distinct from the nonpo-
lar regular Newtonian fluids, it has been found that the couple
stress fluids lead to existence of double solutions over stretching
and triple solutions over shrinking sheets.

The following is pursued in the rest of the paper. Formulation of
the couple stress fluid flow is given in Section 2. Exact solutions are
then presented in Section 3 both for the flow and temperature
fields. Section 4 contains results and discussions. The concluding
remarks eventually are drawn in Section 5.
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2. Formulation of the problem

Consider a steady, two-dimensional laminar flow over a contin-
uously stretching or shrinking sheet in an electrically conducting
quiescent couple stress fluid. A uniform external magnetic field
of strength B0 is supposed to act in the direction perpendicular to
the sheet. The coordinates x and y are used such that x is along
the surface of the sheet, while y is taken as normal to it. The gov-
erning equations are then given by

ux þ vy ¼ 0;

uux þ vuy ¼ muyy �
g0

q
uyyyy �

rB2
0

q
u;

uTx þ vTy ¼
k

qcp
Tyy;

ð2:1Þ

supplemented with the subsequent boundary conditions

uðx;0Þ ¼ dcx; vðx;0Þ ¼ vw; uðx;1Þ ¼ 0; uyyðx;1Þ ¼ 0;
vyyðx;1Þ ¼ 0;

Tðx;0Þ ¼ Tw ¼ T1 þ b1x2 ðPST caseÞ;
� kTyðx; 0Þ ¼ b2x2 ðPHF caseÞ;

Tðx;1Þ ¼ T1; ð2:2Þ

where d ¼ 1 denotes stretching and d ¼ �1 denotes shrinking
sheets, respectively, c is a positive constant measuring the rate of
stretching or shrinking, m is the kinematic viscosity, q is the density
and g0 is the material constant for the couple stress fluid. Two kinds
of general heating processes, namely, the prescribed surface tem-
perature (PST) and the prescribed wall heat flux (PHF) are ac-
counted for.

3. Exact solutions

3.1. Solution of the flow field

Taking into consideration the below similarity transformations
(see [2,26])

g ¼ y

ffiffiffi
c
m

r
; u ¼ cxf 0ðgÞ; v ¼ �

ffiffiffiffiffi
cm
p

f ðgÞ; h ¼ T � T1
Tw � T1

; ð3:3Þ

leading to axial wall constraint vw ¼ �
ffiffiffiffiffi
cm
p

f ð0Þ, the governing equa-
tions of motion and boundary conditions (2.1) and (2.2) are reduced
to the similarity form

�Cf ð5Þ þ f 000 þ ff 00 � f 02 �Mf 0 ¼ 0;

h00 þ Prðfh0 � 2f 0hÞ ¼ 0; ð3:4Þ

f ð0Þ ¼ s; f 0ð0Þ ¼ d; f 0ð1Þ ¼ 0; f 00ð1Þ ¼ 0; f 000ð1Þ ¼ 0;

hð0Þ ¼ 1 ðPST caseÞ; h0ð0Þ ¼ �1 ðPHF caseÞ; hð1Þ ¼ 0: ð3:5Þ

Here C ¼ cg0
qm2 is the couple stress parameter and M ¼ rB2

0
cq is the

magnetic interaction strength parameter. In the absence of the
couple stress parameter C, the fluid is just the classical nonpolar
regular and Newtonian. In this case, solution is known to be unique
for the stretching sheet problem, see [8,27], and further, only dual
solutions exist for the shrinking sheet problem for some combina-
tions of suction and magnetic field parameters, see [28,29]. Triple

solutions were recently encountered for the shrinking sheet prob-
lem in the recent publication [30], whenever the viscoelasticity is
taken into account.

Following the above citations, physical solutions for both
stretching and shrinking sheets come from the exponential
relation

f ðgÞ ¼ sþ d
1� e�kg

k
: ð3:6Þ

Substituting (3.6) into the first of (3.4) gives the following
fourth order algebraic equation for the characteristic parameter k

dþM þ kðs� kþ Ck3Þ ¼ 0: ð3:7Þ

The corresponding four roots of polynomial equation (3.7) are
exactly expressed, respectively by

k ¼ 1
2

ffiffiffiffiffi
k3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2sffiffiffiffi

k3

p � Ck3

C

s0
B@

1
CA;

k ¼ 1
2

ffiffiffiffiffi
k3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2sffiffiffiffi

k3

p � Ck3

C

s0
B@

1
CA;

k ¼ �1
2

ffiffiffiffiffi
k3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2sffiffiffiffi

k3

p � Ck3

C

s0
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1
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k ¼ 1
2
�

ffiffiffiffiffi
k3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2sffiffiffiffi

k3

p � Ck3

C

s0
B@

1
CA;

ð3:8Þ

with the dummy variables

k1 ¼ �2þ 72CðdþMÞ þ 27Cs2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4k3

2 þ �2þ 72CðdþMÞ þ 27Cs2
� �2

r
;

k2 ¼ 1þ 12CðdþMÞ;

k3 ¼
2

3C
þ k1=3

1

321=3C
þ 21=3k2

3Ck1=3
1

:

It is worth noting that the solutions given in Eq. (3.8) may or
may not exist, depending on the values of the physical parameters
involved, since the square roots may give complex values. How-
ever, if k3 < 0, then all solutions are imaginary, so no solutions
(of the prescribed form (3.6)) to the flow problem exist in that case.
Otherwise one or more solutions could be possible.

Having chosen the appropriate roots (with a positive sign) from
(3.8), the velocity profile for both stretching and shrinking surfaces
is determined after differentiating (3.6)

f 0ðgÞ ¼ de�gk
; ð3:9Þ

and the skin friction coefficient of physical significance �f 00ð0Þ is
explicitly given by

�f 00ð0Þ ¼ dk: ð3:10Þ

3.2. Solution of the temperature field

Having determined f in (3.6), by means of the intermediate
variable

t ¼ �e�kg;
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