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a b s t r a c t

The inverse heat conduction problem (IHCP) involves estimation of a surface heat flux from transient
temperature measurements inside a heat conducting body. Commonly an insulated remote boundary
or one with a known heat transfer coefficient is modeled. However, in many practical applications, the
precise thermal condition at the remote boundary is not known. In this paper, a method of accounting
for thermal action at the remote boundary using a second measured temperature history is presented.
The measurement need not be at an actual boundary but can be at an interior point in the domain.

The IHCP solution herein is achieved through the filter coefficient method, which uses filter coefficients
in a convolution summation. By using the filter technique, near real-time heat flux measurements can be
continuously obtained in manufacturing settings to enhance productivity. Also the filter concept opens
the way for the development of new scientific instruments that incorporate inverse problem methods.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The inverse heat conduction problem (IHCP) is typically defined
as the problem of using internal temperature measurements to
find heat fluxes on the surface. Sometimes this specific task is
termed a boundary IHCP to emphasize recovery of the unknown
surface heating action. The IHCP has been studied widely during
last few decades, and notable texts have been authored by Beck
et al. [1], Alifanov [2], Ozisik and Orlande [3] and Murio [4], to
name a few. Several different methods have been developed and
demonstrated for solving IHCPs. All boundary IHCP solutions as-
sume full knowledge of the governing equation and thermal mate-
rial properties, and full knowledge of boundary conditions on all
but the active surface under investigation.

Remote boundaries are typically assumed to be insulated or
cooled with a known heat transfer coefficient. For example, Ijaz
et al. [5] consider estimation of heat flux histories on two faces
of a two-dimensional domain. Their model assumes perfectly insu-
lated surfaces on the other two faces, and temperature data are
gathered on these insulated surfaces to drive the solution of the
IHCP. Chen, et al. [6] also consider a two-dimensional problem,
with two faces insulated, but the third face at a homogeneous tem-
perature condition. In their method, the temperature, and not the
heat flux, is determined on the fourth face of the domain. Mulcahy
et al. [7] consider a problem in an annular three-dimensional

geometry and seek the heat flux history on the inner surface of
the annulus as a function of angle h and axial coordinate z. They as-
sume that all the other surfaces are insulated. Chan [8] performs an
interesting study to determine the heat flux on a cylinder cooled by
a jet. In this two-dimensional problem, measured temperatures on
the surface of the cylinder are used to compute the heat flux on the
cylinder, but this is done through solution of the flow field around
the cylinder. In this case, insulated and no-slip boundaries are im-
posed on the bounding walls of the domain. Khajehpour et al. [9]
tackle two-dimensional problems with finite element analysis
and obtain solutions by splitting the domain into sub-regions.
However, they do assume the remote boundaries are either insu-
lated or have known convection cooling.

Chen, et al. [10] consider a slightly different problem. Their
analysis of a one-dimensional domain considers two subsurface
sensors, but seeks to compute the heat flux at both exposed
surfaces.

Since IHCPs are mathematically ill-posed, an appropriate regu-
larization method needs to be applied in order to convert the ori-
ginal ill-posed problem to a nearby well-posed problem and
achieve a solution for it. Tikhonov regularization (TR) [11,12] is a
common technique to stabilize the IHCP. It is commonly applied
over the whole time domain which means that the solution proce-
dure needs to access all the observations at once [1].

More recently, efforts have been made to develop real-time or
filter forms for processing temperature data to solve the IHCP.
Khorrami, et al. [13] employ an interesting approach based on
the premise that the heat flux component at a particular time is
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a linear combination of the temperature around the time of its
occurrence. They use an artificial neural network to determine
the required coefficients of the linear filter based on detailed
numerical simulation of the target process. Deng and Hwang [14]
also use artificial neural networks to generate the filter solutions
for heat flux estimation based on temperature histories. Ijaz et al.
[5] solve a transient IHCP by using Kalman filter. LeBreux et al.
[15] use a combination of Kalman filtering and recursive least
squares to achieve a real-time algorithm to determine heat flux
history for industrial applications. Lamm [16,17] employs a
sequential computation based on TR by using a recent subset of
available data and a limited number of past predictions and obser-
vations. Cabeza, et al. [18] studied the filter effect of the function
specification method and the truncated singular value decomposi-
tion method in a sequential form [19]. By examining the power
spectral densities of the two methods, they concluded that the reg-
ularization methods act as band-pass filters. Most recently, Wood-
bury and Beck [20] study the structure of the TR problem and
conclude that the method can be interpreted as a sequential filter
formulation for continuous processing of data. They show that the
computed heat fluxes using the whole domain solution and the fil-
ter coefficient solution are virtually the same for the constant-
property solutions.

The filter method [1,20] used in this paper is a representation of
one of many IHCP solution methods, such as Tikhonov Regulariza-
tion, in a digital filter form. It is not a new or different method of
solving IHCPs, but merely a representation of the solution in a form
suitable for continuous (online) processing of data.

Measuring heat flux has great significance in several scientific
experiments as well as industrial applications such as monitoring
manufacturing processes and fire safety tests. Digital filter solu-
tions are especially advantageous for developing new instruments
for near real-time heat flux estimation from continuous tempera-
ture histories.

In this paper, a method is developed to incorporate the temper-
ature measurement history from a second subsurface sensor as a
remote boundary condition in an IHCP solution. The second

measurement may, or may not, coincide with the physical bound-
ary of the domain. Tikhonov regularization is used to stabilize the
solution and the resulting algorithm is written in filter form [20].
An example problem is considered and both the whole domain
method and the sequential filter solution method are illustrated.
The filter solution of the IHCP has a number of advantages includ-
ing simplicity, continuous operation and application to moderate
nonlinearity manifested by temperature-dependent thermal prop-
erties [21] which makes it an appropriate approach for near real-
time heat flux estimation.

2. Problem description

The IHCP solution typically starts by minimizing a sum of
squares function, which is the sum of the squares of the difference
between the measured and calculated temperatures at a location
x1. The calculated temperatures are functions of the unknown sur-
face heat flux. Some form of regularization is needed, and the func-
tion specification method [1] or Tikhonov regularization (TR)
[11,12] are only two of many techniques. For the function specifi-
cation method, the heat flux is found using a sum of squares func-
tion that uses both past and future information. The Tikhonov
whole domain regularization method will have a sum of squares
function over the total time domain. However, the nature of the
IHCP is such that a given heat flux component is a linear function
of only a limited number of past and future measured tempera-
tures. This point is illustrated below.

For simplicity, at this point a sum of squares function over the
total time domain will be used in this analysis. Furthermore this
time domain is large enough so that there is a long middle time re-
gion in which the very early conditions and the final time condi-
tions have negligible effect upon the heat flux. This, too, is
discussed further below.

The describing heat conduction equation is
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Nomenclature

C volumetric specific heat, J/m3-K
f filter coefficients (X21 case)
F filter matrix (X21 case)
g filter coefficients (X12 case)
G Green’s function
G filter matrix (X12 case)
k thermal conductivity, W/m-K
L location of temperature boundary condition, Eq. (3), m
mf number of future time steps
mp number of past time steps
q heat flux, W/m2

S sum of squares of the temperature error, K2

t time, s
T temperature, K
x spatial coordinate, m
x
0

dummy integration variable, Eq. (6)
X sensitivity matrix for unknown surface heat flux
y measured temperature at boundary x = L
Y measured temperature at location x = x1

Z sensitivity matrix for measured temperature boundary
condition at x = L

Greek/Roman
a thermal diffusivity, k/C, m2/s

aT Tikhonov regularization parameter
r standard deviation
r2 variance
b eigenvalue
/ step response function for unit heat flux at x = 0
g step response function for unit temperature at x = L
s integration variable, Eq. (6)

Subscripts
0 surface location or reference value
1 location of measurement sensor
i time index
m eigenvalue index
M time index; any time, or the current time
ss steady state
N last time index
X21 Cartesian heat conduction problem with type 2 and type

1 boundary conditions

Superscript
� dimensionless parameter
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