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a b s t r a c t

This paper proposes a solution method for inverse laser surface heating problem. By minimizing the
mean square error between the experimental data obtained from inside the body and the estimated data
from the derived analytical solution of a laser surface heating problem with time-dependent boundary
conditions, the temperature function at the laser heating end can be determined. Consequently, the tem-
perature distribution and the heat flux over the entire time and space domains can also be obtained. In
addition, the integral transform and tedious numerical operations are not required in the proposed solu-
tion method. Mathematical and experimental examples are given to illustrate the simplicity, efficiency,
and accuracy of the proposed method.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Inverse heat conduction problems (IHCPs) arise in many heat
transfer situations when experimental difficulties are encountered
in measuring or producing the appropriate boundary conditions.
Practical applications are the estimation of the temperature and
the heat flux at the surface of the body under investigation. Laser
surface heating, heat exchangers, combustion chambers, and calo-
rimeter-type instrumentation are typical examples.

The present study considers laser heat treatment on a surface. It
is known that under the laser surface hardening process, the sur-
face temperature must be maintained above the critical transfor-
mation temperature and below the melting point. Thus, during
the heating process, accurate estimations of the temperature, heat
flux, and surface absorptivity on the surface are important. Due to
the difficulty of measuring the temperature and heat flux from the
heated surface directly, these physical quantities are estimated
from the measured temperature data inside the body within the
heating time interval. Such estimation is a typical inverse heat con-
duction problem.

Many numerical techniques have been proposed for solving
one-dimensional IHCPs. Among these methods, the finite differ-
ence method, the finite element method, and the boundary ele-
ment method are the numerical tools of choice for the modeling
and simulation of IHCPs. Lesnic and Elliott [1] employed Adomian’s

decomposition and the mollification method to deal with noisy in-
put data and obtained a stable approximate solution. Monde and
Mitsutake [2], Monde et al. [3] and Woodfield et al. [4] developed
an analytical method using the Laplace transform and half polyno-
mial series of time with a time lag to estimate thermal diffusivity,
surface temperature, and heat flux for one-dimensional IHCPs.
They recommended choosing the measurement points as close to
the surface as possible to give a good estimation. Hon and Wei
[5], Jin and Zheng [6], and Yan et al. [7] developed meshless and
integration-free numerical schemes based on the use of the funda-
mental solution as a radial basis function for one-dimensional
IHCPs. However, the resulting matrix equation is complicated
and it is difficult to obtain accurate results. For the problem of laser
heat treatment on a surface, an analysis includes the utilization of
the inverse study by the conjugate gradient method, with temper-
atures measured near the heated surface was given by Wang et al.
[12]. They show that there is a reasonable agreement on the sur-
face temperature inversely obtained from the individual measure-
ment of two different sensor locations. Chen and Wu [8] proposed
a hybrid technique of the Laplace transform and the finite differ-
ence method in conjunction with experimental temperature data
inside a test cylinder given by Wang et al., to predict the laser-
heated surface temperature. In their numerical example with an
exact solution, the error of the estimated heat flux is approxi-
mately 3%.

Most existing solution methods have to deal with tedious
numerical problems, such as the inverse Laplace transform, stabil-
ity in numerical schemes, and large numbers of cells or elements
in matrix operations. The present study develops an integral-
transform-free solution method for one-dimensional IHCPs with
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time-dependent boundary conditions. The general analytic solu-
tion form of the heat conduction problem with time-dependent
boundary conditions is derived by extending the methods of Lee
and Lin [9], Lee et al. [10], and Chen et al. [11]. The measured
experimental data obtained from inside the body are processed
and approximated by a polynomial function.

By minimizing the mean square errors between the measured
experimental data obtained from inside the body and the estimated
data from the derived analytical solution form, the unknown tem-
perature function at the laser heating end, in polynomial function
form, can be determined. Consequently, the temperature distribu-
tion and the heat flux over the entire time and space domains can
also be obtained. Mathematical and experimental examples are gi-
ven to illustrate the analysis. The developed solution method is sim-
ple, efficient, and accurate. It can be applied to problems with
various kinds of time-dependent boundary conditions.

2. Analytic solutions

Consider the laser heat treatment of the surface of a cylinder
with constant material properties, as shown in Fig. 1. The cylinder
is heated by a laser beam at one end. The time-dependent temper-
ature function,f(t), at the heating end is to be determined. A nonho-
mogeneous third-kind boundary condition is applied at the other
end f0(t). Along the length, the cylinder is enclosed by a highly insu-
lated material, and thus the surface is considered as an adiabatic
surface. The ratio of the length to the diameter is large enough to en-
sure that the problem is one-dimensional. The governing differential
equation and the boundary conditions of the system are

k
@2Tðx; tÞ
@x2 ¼ qc

@Tðx; tÞ
@t

; 0 < x < L; t > 0 ð1Þ

Tð0; tÞ ¼ f ðtÞ; at x ¼ 0; t > 0 ð2Þ

kL
@TðL; tÞ
@x

þ hLTðL; tÞ ¼ f0ðtÞ; at x ¼ L; t > 0 ð3Þ

and the initial condition is

Tðx;0Þ ¼ T0ðxÞ: 05x5L; t ¼ 0 ð4Þ

where, x is the spatial-domain variable,t is the time variable, T(x,t) is
the temperature over the entire domain, k is the thermal conductiv-
ity coefficient, q is the mass density, c is the specific heat, L is the
length of the cylinder, and T0 is the initial temperature. kL and hL

are the thermal conductivity and the heat convection coefficients
at x = L, respectively. When kL = 0, the temperature at the boundary
is time-dependent. Otherwise, when hL = 0, the heat flux at the
boundary is time-dependent. In the present study, a thermocouple
is located at x = xm to record the temperature history, Tmea(xm,tr).
Here, tr,r = 1 � p, are the times of measurement within the laser
heating time interval.

In terms of the following dimensionless quantities

n ¼ x
L
; h0 ¼

T
Tr
; h0 ¼

T0

Tr
; s ¼ kt

qcL2 ; BiL ¼
hLL
kL

;

�f ðsÞ ¼ f ðtÞ
Tr

; f0ðsÞ ¼
f0ðtÞL
kLTr

ð5Þ

where BiL is the Biot number and Tr is the reference temperature,
the boundary value problem becomes

@2hðn; sÞ
@n2 ¼ @hðn; sÞ

@s
; 0 < n < 1; s > 0 ð6Þ

hð0; sÞ ¼ f ðsÞ; at n ¼ 0; s > 0 ð7Þ
@hð1; sÞ
@n

þ BiLhð1; sÞ ¼ f0ðsÞ; at n ¼ 1; s > 0 ð8Þ

hðn;0Þ ¼ h0ðnÞ: 05n51; s ¼ 0 ð9Þ

Nomenclature

BiL Biot number at the right end of cylinder
Bn(s) dimensionless quantity defined in Eq. (31)
Bnj(s) dimensionless quantity defined in Eq. (A12)
c specific heat (W s/kg �C)
Cj coefficients of dimensionless time-dependent function
C vector in matrix equation
E function representing the error
f(t) time-dependent temperature function at the heating

end
�f ðsÞ dimensionless time-dependent function at the heating

end
f0(t) time-dependent function for third-kind boundary con-

dition
f0ðsÞ dimensionless time-dependent function for third-kind

boundary condition
F (n,s) dimensionless quantity defined in Eq. (23)
g1(n), g2(n) shifting functions
hL convection coefficient at the right end of cylinder

(W/m2)
k thermal conductivity (W/m �C)
kL conductivity coefficient at the right end of cylinder

(W/m �C)
L length of cylinder (m)
q(n,s) dimensionless heat flux
R vector in matrix equation
T temperature (�C)

Tr reference temperature (�C)
T0(x) initial temperature (�C)
Tmea(xm, tr) temperature measured at (xm, tr)
t time variable (s)
tr time of temperature measurement
x spatial-domain variable (m)
Z matrix in matrix equation

Greek symbols
an dimensionless quantity defined in Eq. (33)
dn norm of nth eigenfunctions
en dimensionless quantity defined in Eq. (A6)
/n(n) nth eigenfunction
cn(s) dimensionless quantity defined in Eq. (32)
gj(n,s) dimensionless quantity defined in Eq. (A11)
gjr(n) dimensionless quantity defined as gjr (n) = gj(n,sr)
jn dimensionless quantity defined in Eq. (A7)
kn nth eigenvalue
m(n,s) transformed function
h dimensionless temperature
h0 dimensionless initial temperature
q mass density (kg/m3)
s dimensionless time variable
sr dimensionless measured times
tn dimensionless quantity defined in Eq. (A8)
n dimensionless spatial-domain variable
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Fig. 1. Schematic diagram of the inverse problem.
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