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a b s t r a c t

The flow of micropolar fluid and heat transfer past a porous shrinking sheet is studied in this note. The
main concern, unlike the recent numerical work of Bhattacharyya et al. (2012) [1], is to determine math-
ematically the bounds of multiple existing solutions of purely exponential kind. The presence of dual
solutions are proved for the flow field, whose closed-form formulae are then derived. The energy equa-
tion is also treated analytically yielding exact solutions beneficial to understand the rate of heat transfer.
Critical values for the existence or nonexistence of unique/multiple solutions are worked out. The exact
form of velocity/temperature profiles and the skin friction/couple stress/heat transfer parameters enable
one to easily catch the physical processes occurring in the present model.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The model of microfluid first pioneered by Eringen [2] has been
the focus of past research to explain the character of certain real
fluid flows. This mathematical model takes into account a class
of fluids having certain microscopic characters arising from the lo-
cal structure and micromotions of the fluid elements [1]. Micropo-
lar fluids are known as part of microfluids, which are also due to
Eringen [3].

A rich survey of the past and recent works done concerning the
micropolar fluids and, their technological and industrial applica-
tions were recently presented in [1]. One can also refer to the rel-
evant stretching or shrinking body studies by Fang and Zhang [4],
Khan et al. [5,6] and Turkyilmazoglu [7,8], amongst many others.

In the recent paper of [1], the flow of micropolar fluid and heat
transfer over a permeable shrinking sheet was studied by numeri-
cal means. The deriving force of the current work is, as opposed to
the aforementioned numerical treatments, to mathematically ex-
plore the physical problem under consideration. Expressions of
threshold values for the nonexistence of the solutions or the exis-
tence of dual solutions are derived in closed-form. Such analytical
formulae are very useful, not only to interpret the flow and tem-
perature fields but also to view behaviour of the skin friction coef-
ficient, couple stress coefficient and Nusselt number, which play
major role in industrial applications.

2. Problem formulation

We consider a steady two-dimensional flow of micropolar fluid
due to an impermeable shrinking sheet, whose shrinking speed is
u ¼ �cx; c > 0. The temperature is assumed to vary from a con-
stant wall value to a constant free stream temperature. Making
use of the classical boundary layer approximation, the governing
equations of motion for the micropolar fluid and heat transfer were
successfully extracted in [1], refer to Eqs. (1)–(6) in [1]. For the sake
of being concise, we only give the final similarity equations that
govern the flow motion and heat transfer

ð1þ KÞf 000 þ ff 00 � f 02 þ Kh0 ¼ 0;

ð1þ K=2Þh00 þ fh0 � f 0h� Kð2hþ f 00Þ ¼ 0;
h00 þ Prfh0 ¼ 0;

ð2:1Þ

subject to the boundary conditions

f ðgÞ ¼ s; f 0ðgÞ ¼ �1; hðgÞ ¼ �mf 00ðgÞ; hðgÞ ¼ 1 at g ¼ 0;
f 0ðgÞ ! 0; hðgÞ ! 0; h! 0 as g!1;

ð2:2Þ

where g is a scaled boundary layer coordinate, f 0ðgÞ is the similarity
velocity component, hðgÞ is the similarity microrotation or angular
velocity, s is the mass flux velocity with s < 0 for suction and s > 0
for injection, K is the material parameter and m represents a mea-
surement for the concentration of microelements, respectively.
Moreover, h is the scaled fluid temperature and Pr is the usual Pra-
ndtl number.
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3. Exact solutions

A numerical treatment of Eqs. (2.1), (2.2) has already been given
in [1]. We instead present exact analytic solutions in this section.
Branch 1 or branch 2 refers to part of multiple solutions in the
sequel.

3.1. Flow field

Based on the analytical solutions derived in Crane [9], Troy et al.
[10], Mcleod and Rajagopal [11], Lawrence and Rao [12] and Pop
and Na [13] for the stretching/shrinking sheet problems of partic-
ular type, it is desired to obtain exact solutions of the system (2.1)–
(2.2), which is influenced by the material, concentration and wall
suction parameters. The above literature enables us to assume a
solution of the form

f ðgÞ ¼ s� 1� e�kg

k
;

hðgÞ ¼ �mf 00ðgÞ ¼ �mke�gk:

ð3:3Þ

Upon substitution, the entire boundary conditions in (2.2) are seen
to be met by the solution (3.3). It is obvious that true solutions re-
quire the condition k > 0. As a result, the momentum and angular
velocity equations in (2.1) produce the relations

� 1þ skþ ð�1þ Kð�1þmÞÞk2 ¼ 0;

2mð1� skþ k2Þ þ Kð2þm �4þ k2� �
Þ ¼ 0;

ð3:4Þ

whose simultaneous solutions yield the dual solutions

m ¼ 1=2; k ¼ s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4� 2K þ s2
p

2þ K

 !
;

m ¼ 1=2; k ¼ sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4� 2K þ s2
p

2þ K

 !
;

m ¼ 8ð1þ KÞ2

s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4þ 4K þ 8K2 þ s2

p� �2 ; k ¼
ffiffiffiffiffi
2
m

r0
B@

1
CA; ð3:5Þ

m ¼ 8ð1þ KÞ2

sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4þ 4K þ 8K2 þ s2

p� �2 ; k ¼
ffiffiffiffiffi
2
m

r0
B@

1
CA:

Thus, the first two of (3.5) are valid for m ¼ 1=2 and the next two
are for other values of m. It should be noticed that the structure
of Eq. (3.5) puts restrictions on the solutions such that the first
two holds for all physical K P 0 and

s P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2K

p
;

whereas the third for 0 6 K 6 1=2 and

s P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 4K � 8K2

p
and the fourth, in addition to the above, for K P 1=2 and all s.
Therefore, the critical values for the nonexistence or existence of
dual solutions are given by the formulae
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Fig. 1. The physical coefficients at m ¼ 1=2 (thick curves for the first branch and dotted curves for the second ones, respectively, outer loop for K ¼ 0:1 and inner loop for
K ¼ 0:2) as a function of s. (a) Skin friction coefficient f 00ð0Þ, (b) couple stress coefficient h0ð0Þ and (c) heat transfer coefficient �h0ð0Þ with Pr ¼ 3=7.
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