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a b s t r a c t

A model for double-diffusive convection in an anisotropic porous layer with a constant throughflow is
explored, with penetrative convection being simulated via an internal heat source. The validity of both
the linear instability and global nonlinear energy stability thresholds are tested using three dimensional
simulation. Our results show that the linear threshold accurately predicts on the onset of instability in the
steady state throughflow. However, the required time to arrive at the steady state increases significantly
as the Rayleigh number tends to the linear threshold.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Double-diffusive flows in porous media are widely encountered
both in nature and in technological processes [1,2]. Bioremedia-
tion, where micro-organisms are introduced to change the chemi-
cal composition of contaminants is a very topical area, cf. Chen
et al. [3], Suchomel et al. [4]. Contaminant/pollution transport is
yet another area of multi-component flow in porous media which
is of much interest in environmental engineering, cf. Curran and
Allen [5], Ewing and Weekes [6], Franchi and Straughan [7]. Other
very important and topical areas of salt/heat transport in porous
flows are in oil reservoir simulation, e.g. Ludvigsen et al. [8], and
salinization in desert-like areas, Gilman and Bear [9].

The literature on the study of the effect of vertical throughflow
on convective instability in a porous medium is much less wide-
spread, although recent studies include Shivakumara and Suma
[10], Shivakumara and Khalili [12], Shivakumara and Sureshkumar
[13], Nield and Kuznetsov [14], Hill [15], Hill et al. [16] and Capone
et al. [17].

The effect of vertical throughflow on double-diffusive convec-
tion in a porous medium is important due to its applications in
engineering (e.g. the directional solidification of concentrated al-
loys as well as in some energy storage devices) and geophysics

(e.g. seabed hydrodynamics such as in hydrothermal vent sys-
tems). The difficulty in dealing with such instability problems is
that one has to solve time dependent equations with variable coef-
ficients, and the work in this direction is very limited. Shivakumara
and Nanjundappa [18] used linear stability theory to analytically
investigate the effects of quadratic drag and vertical throughflow
on double diffusive convection in a horizontal porous layer using
the Forchheimer-extended Darcy equation. Shivakumara and
Sureshkumar [19] investigated the effects of quadratic drag and
vertical throughflow on the linear stability of a doubly diffusive
Oldroyd-B-fluid-saturated horizontal porous layer. Altawallbeh
et al. [20] analytically studied using both linear and weakly nonlin-
ear stability analyses the double-diffusive convection in an aniso-
tropic porous layer heated and salted from below with an
internal heat source and Soret effect. Shivakumara and Khalili
[11] studied the problem of double-diffusive convection in a fluid
filled anisotropic porous layer. Hill et al. [21] studied this problem
but with the presence of an internal heat source to allow penetra-
tive convection to occur. In this paper, we explore the model pre-
sented in Hill et al. [21] of double-diffusive throughflow in an
internally heated anisotropic porous medium.

When the difference between the linear (which predicts insta-
bility) and nonlinear (which predicts stability) thresholds is very
large, the validity of the linear instability threshold to capture
the onset of the instability is unclear. Thus, we utilise the stability
analysis of Hill et al. [21] to select regions of large subcritical insta-
biltiies and then develop a three dimensional simulation for the
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problem to test the validity of these thresholds. To achieve this we
transform the problem into a velocity–vorticity formulation and
utilise second order finite difference schemes. We use both implicit
and explicit schemes to enforce the free divergence equation.

Standard indicial notation is used throughout the article, where
ðx1; x2; x3Þ ¼ ðx; y; zÞ.

2. Mathematical formulation and governing equations

Utilising the approach of Hill et al. [21] (schematically shown in
Fig. 1) let us consider a layer X of a water saturated porous med-
ium bounded by two horizontal planes. Let d > 0;X ¼ R2 � ð0; dÞ
and Oxyz be a cartesian frame of reference with unit vectors i; j, k.

Assuming that the Oberbeck–Boussinesq approximation is valid
(cf. [22] and references therein), the flow in the porous medium is
governed by Darcy’s law

l
KðzÞv i ¼ �P; i � kigqðT; CÞ; ð1Þ

v i;i ¼ 0; ð2Þ
1
M

T ;t þ v i T ; i ¼ jtr2T þ Q ; ð3Þ

eC ;t þ v i C ; i ¼ jcr2C; ð4Þ

where (2) is the incompressibility condition and (3) and (4) are the
equations of energy and solute balance, respectively. The derivation
of Eqs. (1)–(4) may be found in [23].

We have denoted v; P; T;C;l; e; g and jc to be the velocity, pres-
sure, temperature, concentration of salt, viscosity, porosity, gravi-
tational acceleration and salt diffusivity, respectively. The density
q is of the form

qðT; CÞ ¼ q0ð1� atðT � T0Þ þ acðC � C0ÞÞ

where q0; T0 and C0 are a reference density, temperature and con-
centration, respectively, and at and ac are the coefficients for ther-
mal and solutal expansion, respectively.

The permeability of the porous medium is taken to be of the
form

KðzÞ ¼ K0sðzÞ;

where K0 is a reference permeability and sðzÞ ¼ 1þ k1z=d, with con-
stant k1 > �1 to ensure sðzÞ > 0. The effective thermal conductivity
of the saturated porous medium jt is defined by the ratio between
the thermal diffusivity of the porous medium and the heat capacity
per unit volume of the fluid:

jt ¼
ð1� eÞjs þ ejf

ðq0cpÞf

where js and jf are the thermal diffusivities of the solid and fluid
components of the porous medium, respectively and cp is the spe-
cific heat of the fluid at constant pressure. The coefficient M is the
ratio of heat capacities defined by

M ¼
ðq0cpÞf
ðq0cÞm

: ð5Þ

In (5) c is the specific heat of the solid, and

ðq0cÞm ¼ ð1� eÞðq0cÞs þ eðq0cpÞf ;

denotes the overall heat capacity per unit volume of the porous
medium. The subscripts f ; s and m referring to the fluid, solid and
porous components of the medium, respectively.

The Q ð> 0Þ term in (3) is a (constant) internal heat source, with
its inclusion allowing the model to describe penetrative convection
in the porous layer [24].

The temperature and concentration boundary conditions for the
problem are T ¼ TU and C ¼ CU at z ¼ d and T ¼ TL and C ¼ CL at
z ¼ 0, where CL > CU , so that the system is being salted from below.
We allow for the two cases of heating from below TL > TU and from

Nomenclature

ðx1; x2; x3Þ ¼ ðx; y; zÞ Cartesian coordinates
v velocity
P pressure
T temperature
C concentration of salt
u dimensionless velocity
p dimensionless pressure
h dimensionless temperature
/ dimensionless concentration of salt
l viscosity
e porosity
g gravitational acceleration
jc salt diffusivity
q density
q0 reference density
T0 reference temperature
C0 reference concentration
at thermal expansion coefficient
ac solutal expansion coefficient
KðzÞ ¼ K0sðzÞ permeability of the porous medium

K0 reference permeability
jt effective thermal diffusivity of the porous medium
js thermal diffusivity of the solid component of the porous

medium
jf thermal diffusivity of the fluid component of the porous

medium
cp specific heat of the fluid at constant pressure
c specific heat of the solid at constant pressure
M ratio of heat capacities
Q ð> 0Þ internal heat source
RaL ¼ R2

t thermal Rayleigh number
R2

c solute Rayleigh number
Tf dimensionless form of the throughflow
a2 horizontal wavenumber, m2 þ n2

m;n dimensionless disturbance wave vector
x!¼ ðn1; n2; n3Þ vorticity vector
w
!¼ ðw1;w2;w3Þ potential vector
Lx box dimension in the x direction
Ly box dimension in the y direction

Fig. 1. Schematic representation of a cross-section of the system.
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