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a b s t r a c t

The heat flux problem for a binary gaseous mixture confined between two parallel plates with different
temperatures is studied on the basis of the direct simulation Monte Carlo method with an implementa-
tion of ab initio potential. The calculations were carried for a wide range of the gas rarefaction, for several
values of the mole fraction and for two values of the temperature difference. The smaller value of the dif-
ference corresponds to the limit when the nonlinear terms are negligible, while the larger value describes
a nonlinear heat transfer. The heat flux, temperature, and mole fraction distributions are presented. To
study the influence of the intermolecular potential, the same simulations are carried out for the hard
sphere molecular model. A relative deviation of the results based on this model from those based on
the ab initio potential is analyzed. It is pointed out that the difference between the heat flux of the
two potentials is about 8% and 5% for the small and large temperature differences, respectively. The tem-
perature distribution between plates is weakly affected by the molecular potential, while the chemical
composition variation is the most sensitive quantity for the considered problem. The reported results
can be used as benchmark data to test model kinetic equations for gaseous mixtures.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In our previous paper [1], we showed that any intermolecular
potential can be implemented into the direct simulation Monte
Carlo (DSMC) method [2] with the same computational effort as
that for the hard sphere (HS) molecular model. Since reliable infor-
mation about intermolecular potentials of many gases can be
found in literature, see e.g. Refs. [3,4], it is not necessary to use
the potentials like variable hard spheres [2], variable soft spheres
[5] and generalized hard spheres [6] elaborated specifically for
the DSMC method. Recently, the ab initio (AI) potentials were cal-
culated for practically all noble gases and their mixtures, see e.g.
Refs. [7–14]. An implementation of this potential into the DSMC
[15] made this method completely free from tuned parameters
usually extracted from experiments. Such an approach allows us
to obtain benchmark data which can be used to test kinetic models
and approximate methods in order to solve many practical prob-
lems of heat and mass transfer with modest computational effort,
but without losing reliability.

Our recent paper [16] reports benchmark data for the Couette
flow of helium–argon mixture over the whole range of the gas rar-
efaction based on the AI intermolecular potential. A comparison of
the results obtained for the AI potential with those for the HS
potential showed that the Couette flow is weakly sensitive to the

potential. In the present paper, we continue to study the influence
of the intermolecular potential on various types of mixture flows.
More specifically, a heat transfer through a mixture confined be-
tween two plates is calculated applying the DSMC technique. The
calculations are carried out over a wide range of the gas rarefaction
for both AI and HS potentials.

The flow to be considered here is a classical problem of fluid
mechanics. Many researchers studied this problem in case of a sin-
gle rarefied gas, see e.g. Refs. [17–26]. On our knowledge, there are
very few papers [27–31] on heat transfer through a mixture of rar-
efied gases. The works [27,30,31] provide results based on the
Boltzmann equation with the HS potential. The paper [28] reports
results on the heat flux based on the linearized McCormack (MC)
model [32] of the Boltzmann equation. The paper [29] is also based
on the MC model, but two potentials were used, viz., HS and the so-
called realistic potential (RP). A comparison of results based on
these two potentials showed that the heat transfer is strongly sen-
sitive to the potential. As was shown in Refs. [33–38], many other
phenomena in gaseous mixtures are very sensitive to the potential
of the intermolecular interaction. Thus, it is important to obtain
benchmark results based on the ab initio calculations for a large
number of phenomena.

The aim of the present paper is to calculate the heat flux
through a binary mixture of rarefied gases confined between two
parallel plates based on the AI potential implemented into the
DSMC method. To study the influence of the potential on heat flux,
temperature and chemical composition distributions, the same
problem will be solved for the HS molecular model too.
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2. Statement of the problem

Consider a binary gaseous mixture confined between two
parallel plates fixed at x ¼ �H=2 and having different temperatures
T0 � DT=2, respectively. Thus, H is the distance between the plates
and DT is the temperature difference. We are going to calculate the
heat flux q0x, temperature TðxÞ profile and mole fraction CðxÞ distri-
bution between the plates.

Besides the relative temperature difference DT=T0, the solution
of the problem is determined by two more parameters. The first
one is the mole fraction defined as

C ¼ n1=ðn1 þ n2Þ; ð1Þ

where n1 and n2 are the number density of species. Because of
thermodiffusion phenomenon, the mole fraction varies between
the plates so that we will distinguish the equilibrium value C0, i.e.
its value at DT ¼ 0, and the local mole fraction CðxÞ which is a
function of the coordinate x when DT – 0.

The other parameter determining the solution is the rarefaction
parameter defined as

d ¼ H=‘; ‘ ¼ l0v0=p0; ð2Þ

where ‘ is the equivalent mean-free-path, l0 is the viscosity of
mixture at the equilibrium temperature T0;p0 is the equilibrium
pressure, and v0 is the characteristic molecular speed of the mixture
given as

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT0=m

q
; ð3Þ

kB is the Boltzmann constant, m is the mean molecular mass of
mixture given as

m ¼ C0m1 þ ð1� C0Þm2; ð4Þ

m1 and m2 being the molecular masses of species.
The solution of the problem is also determined by the gas-sur-

face interaction law, but in the present work we are not interested
in the influence of this interaction on the heat transfer. Therefore,
the diffuse scattering of gaseous particles of both species on the
plates is assumed.

The results will be given in terms of the dimensionless heat flux
q defined by

q ¼ �q0xT0=ðp0v0DTÞ; ð5Þ

which is always positive. Since the reduced heat flux q weakly
depends on relative temperature drop DT=T0, the knowledge of this
quantity allows us to use data obtained for a specific value of DT=T0

over a wide range of this ratio.
We are going to calculate q as a function of the parameters

DT=T0;C0, and d for both HS and AI potentials with the numerical
error less than 0.5%. Moreover, the temperature and mole fraction
profiles will be reported. A comparison of the results based on
these two different potentials will allow us to study their influence
on the heat transfer through a mixture.

3. Free-molecular regime

In the free-molecular regime (d! 0) the problem is easily
solved for the diffuse scattering of gaseous particles on the walls,
see e.g. Refs. [2,29]. In this case, the heat flux reads

q0x ¼ �
4p0v0ffiffiffiffi

p
p C0

ffiffiffiffiffiffiffi
m
m1

r
þ ð1� C0Þ

ffiffiffiffiffiffiffi
m
m2

r� �
h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ h
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� h
p ; ð6Þ

where

h ¼ DT=2T0: ð7Þ

The dimensionless heat flux (5) takes the form

q ¼ 2ffiffiffiffi
p
p C0

ffiffiffiffiffiffiffi
m
m1

r
þ ð1� C0Þ

ffiffiffiffiffiffiffi
m
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The temperature of the mixture is given as the geometric average of
the surface temperatures, i.e.

T ¼ T0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
: ð9Þ

The mole fraction in this regime is equal to its equilibrium values
C0.

In order to estimate the deviation of the non-linear solution (8)
from the linearized one, the expansion with respect to the temper-
ature difference DT=T0 is obtained as

q ¼ 1ffiffiffiffi
p
p C0

ffiffiffiffiffiffiffi
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 !

: ð11Þ

4. Hydrodynamic regime

In the hydrodynamic regime (d� 1), the solution is based on
the Fourier equation

q0x ¼ �jðdT=dxÞ; ð12Þ

where j is the heat conductivity of mixture. Substituting the Fou-
rier Eq. (12) into the energy conservation law, the equation for
the temperature distribution is obtained as

d
dx

j
dT
dx

� �
¼ 0: ð13Þ

The main difficulty to solve this equation is that the coefficient j is
a function of both temperature T and chemical composition C of
mixture. The fact is that, in a non-isothermal mixture being at rest,
a mole fraction gradient is established which is related to the tem-
perature gradient as

dC=dx ¼ �ðkT=TÞðdT=dxÞ; ð14Þ

where kT is the thermal diffusion ratio which is also a function of
local temperature and mole fraction. Thus, the mole fraction
distribution is not known a priori that makes a rigorous analytical
solution of Eq. (13) for mixture not possible.

The contribution of non-linear terms into the heat flux and tem-
perature distribution can be estimated for a single gas. Like in the
previous work [16], here we will restrict ourselves by the approx-
imation assuming the following dependence of the thermal
conductivity j on temperature

jðTÞ ¼ j0 T=T0ð Þx; ð15Þ

where j0 ¼ jðT0Þ. Then, Eq. (13) is easily solved as

T=T0 ¼ ðAþ BxÞ1=ðxþ1Þ
: ð16Þ

Combining Eqs. (12) and (16), the heat flux is obtained as

q0x ¼ �j0B: ð17Þ

The unknown constant A and B are found under the temperature
continuity condition, i.e.

T ¼ T0 � DT=2; at x ¼ �H=2; ð18Þ

so that

A ¼ 1þ hð Þxþ1 þ 1� hð Þxþ1
h i

=2; ð19Þ

B ¼ 1þ hð Þxþ1 � 1� hð Þxþ1
h i

=H; ð20Þ

92 J.L. Strapasson, F. Sharipov / International Journal of Heat and Mass Transfer 71 (2014) 91–97



Download English Version:

https://daneshyari.com/en/article/7057469

Download Persian Version:

https://daneshyari.com/article/7057469

Daneshyari.com

https://daneshyari.com/en/article/7057469
https://daneshyari.com/article/7057469
https://daneshyari.com

